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Abstract

This paper considers some properties associated with the dominant root of the
characteristic polynomial of arbitrary order linear homogeneous recurrence
relations with integer coefficients. In particular, it looks at computational issues
for the general terms of the related sequences, and gives examples in terms of the
Fibonacci numbers.

1. Introduction

Define a fundamental homogeneous linear recursive sequence of arbitrary order » by the
recurrence relation
.
Hy = Zj=l Pu,;, n>0,

with u, = 0,n < 0, and » = 1, as initial conditions. The coefficients are arbitrary
numbers: integers if we want integer sequences. We shall be concerned in this note with
some aspects of the dominant root a of the auxiliary equation of the above recurrence
relation.

The fundamental nature of {u,} has been illustrated by d’Ocagne (Dickson, 1952) who
showed that any element of the set Q = Q(P1,P»,...,P,) of all sequences of order » which
satisfy the recurrence relation can be expressed in terms of the fundamental sequence and
the initial terms (of {w,} say):

—1 -1 y
Wa = 200 2y GO PiWjttn, n 20,
with Py = 1 for notational convenience. For example, when r = 2, we get

Wn = Witly1 + Wo(Un — Prtty-1) = Wity + Pawouin—



which agrees with Equation (3.14) of Horadam ( 1965).

2. Fibonacci Results

Theorem 1
Fn+1 = [aFn]

Corollary 1
An integer m = [Fpi/a] iff m = F,

where [¢] is the nearest integer function (Gilman and Rose, 1984) and a is the dominant
root of the characteristic equation associated with the Fibonacci recurrence relation.

For example, the theorem is a generalization of the result of Hoggatt and Bicknell (1979)

that for n > 2
leF,],  nodd,
Fun =
laF, ]+ 1, neven,

in which | « |, the floor function, is the integer part of a number.

_ an+1 ___ﬂn+1
Foy = —4—p—
n+l _ An+l —
e R e R
n+l _ n
e il
—aF,+p" (and|p"| <05, n>1).1
For example,
Fg =|1.61803 x 13 |
=121.03439 |
= 2]
Fy+Fg=|1.61803x 8 |+[1.61803 x5 |
= | 12.94424 |+ 8.09018 |
=13 +8.

The corollary is amenable to computational testing, namely, given an integer m to tes

poon
e



whether m € {F,}, that is whether it is a Fibonacci number. For instance, consider

my = 12586269025, then mi/a = 7778742049 is "extremely close” to an integer, (and
my = Fs), whereas if my = 12586269026 (= m; + 1), then m,/a is not very close” to an
integer (and my € {F,}). More specifically, [F'so/a] = Fa9 = m; and [a@ x m1] = F's.

It is the purpose of this paper to explore some aspects of these phenomena, though the
nature of the approximations leaves some of the questions unresolved.

3. Contraction Process

If the conjectures are true, then it is important to find a computationally efficient method of
calculating dominant roots for » > 2. We shall develop a contraction process for arbitrary

r > 2 after first illustrating the process with a third-order case. Considerr = 3, P; =0,

P, = P3 =1, so that

Wy = Wyp +Wp3.

The characteristic equation is then
3 =x+1
so that, in turn,

x*=x+x
X=x3+x2=xt+x+1

X =x3+xt+x=x+2x+1.

In order to speed up the process, Gnanadoss (1960) suggested a contraction as follows.

1= ()Y =22 +20+1
and so on until
x® = 170625x% + 2260302x + 128801,

and
x* = 226030x% + 299426x + 170625,

so that the dominant root of the characteristic equation is

a = x49/x48

1.324717957 whenx = 1,

1.324717955 whenx = 2,
1.324717973 whenx = 1.3.

If we take the last value of a then Theorem 1 works for

I

Une3 = Uptl + Up.
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For the case of arbitrary order 7, the characteristic equation can be rewritten similarly as

7
x" = E ijr—j
J=1
,

Xl = 2 :ijr~j+1
J=1

,
= Pix"+ E Pjxr+1
Jj=2

r r-1
= E P}ijr_j+ E Pj+1x"f
J=1 J=1

= Y (P1P;+ Ppa 0

J=1

.
xr+2 = 2 :(Plpj +Pj+1 )xr~j+1
1

,
= (PH+ P2 + 3 PPy + P a
j=2

r r
= Y (P} + PP + D (P1Pyr + Piua )’
j=1 J=

= Z(P%Pj"'PZPj +P1Pj+1 +Pj+2)x"f.

j=1
More generally,
Theorem 2
ifx" = ;01 P,¥/ ,then x™" = Z;Ol Onjd,
where
Qn,O =P rln
QO,m =P r—m

Owm=0form>rm<0,n<0

Qn,m = Qn~1,m~l +Pr—an—-l,r—1:0 <m<r.
Proof We use induction on .

r-1 r—1
> Qo = 3 Py
j=0 j=0

. xr+0

Assume the result is true forn = 1,2,3,...,s.
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r-1
xr+s+1 — Z :Qstj
j=0

r—2

= Qyprx + Z Qstj+1

Jj=0

r—1
= Qs,r——]xr + Z Qs,/~—1xj

j=0
r-1 r-1

= Qs,r—lxr + E ’QsH,j-xj - z 'Pr—st,r—lx]
j=0 j=0

r-1 r—s
= Qs,r—l-xr - Qs,r—l ZPr~j-xj + Z QS+1ij

Jj=0 Jj=0

r-1
= E ,Qs+1,ixj- |
Jj=0

In the case when r = 2, the theorem reduces to the known result that a - F,./F, as
n - . From the study of the convergents p,,q, of the continued fraction expansion of
a = [1;1] the error is less than 1/g2 (Mack, 1970a,b). For instance,

F
_1% = %’%f— = 1.61803396317

so that the Fibonacci auxiliary polynomial a? — @ — 1 is satisfied to the ninth decimal place
for n as low as 20.

At this stage one might note that Goldstern et al (1989) have determined the asymptotic
distribution function of the ratios of the terms of a linear recurrence. In doing so they too
have studied the characteristic polynomials. de Pillis (1998) has highlighted fascinating
and surprising feature’s of Newton’s formula for finding a root of a non-linear function
when applied to cubic polynomials and has speculated on the generalization of his
observations.

4. Some Examples

Table 1 shows the first few terms of {Q,» } with P; = 1.
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ro |2 3 4 5
nm|0 |1 |0 1 {2 (0|1 2 |3 (0|1 {2 |3 |4
0 |1 |1 |1 1 1 1 |1 1 1 1 |1 |1 1 1
1 1 12 |1 |2 1 1 |12 |2 1 1 12 (2 |2 1
2 12 (3|1 (2 13 1 12 |3 1 1 12 |3 |3 1
3 |3 |5 1|3 |4 |5 1 12 |3 |4 1 12 |3 |4 I
4 |5 1|85 |8 |9 |4 |5 |6 (7 |1 |2 |3 |4 |5
5 |8 (13|19 (14 (17 |7 (11 |12 |13 |5 |6 |7 |8 |9
6 |13(21]17 |26 |31 |[13]20 |24 |25 |9 (14|15 |16 |17
7 213431 |48 |57 25|38 |45 (49 172631 |32 |33
8 [34|55/57 |88 |[105/49 74 (87 |94 1335059 (64 |65
9 |55/89|105162 (19394 143|168 |181 65|98 | 115|124 |129
Table 1: Qum,r = 2,3,4,5
Consider further that for {u,},P; = 1,j1,2,...,7,
whenr = 1,
U, = Up1and a = 1;
whenr = 2,
Up = Up] + Uy and @ = 1.62.
In general,
Corollary 2
lrgrg'}a(r)=2.
Proof X" = Zj;lx"“f = =L implies ¢ = 2— -~ (see Table 2). W
ria
111
2 |1.618033989
3 |1.839286755
411927561975
511.968948237
6 | 1.983582843
7 [ 1.991964197
811.99603118
9 |1 1.99802947

Table 2: Dominant Root Values

Note that if we use the value of a from Table 2 with the recursive sequence {u,} defined
by

19



Upt3 = Ups2 + Upl + Uy,

then Theorem 1 does not work for this sequence.

5. Further Connections

Observe that the characteristic equation, x> — x — 1, is of interest because it represents a
special case of polynomials of degree > 2, in so far as its only real root @ turns out to be the
fundametnal unit of O(w). As we saw, @ = 1.325, with conjugate zeros
o' = -0.662 + 0.562i, ®” = —0.662 — 0.562i and |0'| = |®”| = 0.868. Bernstein (1874) has
proved that (1,®,®?) is a minimal basis of Q(w). He used a recursive approach to establish
in turn that

@O = Iy + Sp® + t,©*
and so

O™ = 10 + 5,0° + 1(1 + ©)
= Fnel + Spr1 @ + 1 0,
and hence, by comparing coefficients,
Tn+1 = Or, +0s, + 12,
Spt1 = lrp + 08y, + 1t
w1 = Ory + 18, + 01,

and
Snl = ¥ + Fpel,
Iyvl = Fp-1 + 1y
Let
00
R(x) =" rax".
Then using
Tn+3 = Tn+Tn+1,
we get X
= 1—x
R(x) - 1__x2__x3
and

Fn = Zk=0 ( 27::1](;21;1 )
in whichm = | +n |,and p = 2n—m. Thus x* —x — 1 is the recursion function for
fn.2) =% D).
Thus Bernstein (1974) has shown, with methods similar to those considered here, but from
a different point of view, that the question of the zeros of f{(n,2) is a combinatorial one. He
observed further that the study of f(n,2) for real values of » and of

finky =3 1y (")
is an open one. Moreover, the conjugate function
g(n) = (=1)"f(n,2)

— 32
*rn+3“rn+2”n+4

r
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takes the values of all perfect squares from 1 to 49, (that is, 1,4,9,16,25,36,49) between
n = 1 and n = 28, but it is not known if it takes on all perfect squares as values. The case
f(n,1) yields the Fibonacci numbers, as is well known, and they too are amenable to a
combinatorial explanation (Hoggatt and Lind, 1968).

More recently, Rieger (1999) has applied Newton approximation to the Golden Section
(effectively the dominant root of the second order case). His consideration of the continued
fraction convergents in this context has been developed by Moore (1993) who has also
considered the asymptotic behaviour of golden numbers (Moore, 1994), as has Prodinger
(1996).
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