RNNTDH 5 (1999) 4, 151-162
THE CARDANO FAMILY OF EQUATIONS

J.V. Leyendekkers
The University of Sydney, 2006, Australia

A.G. Shannon

University of Technology, Sydney, 2007, &
KvB Institute of Technology, North Sydney, NSW, 2060, Australia

ABSTRACT

The polynomial expansion of the Diophantine equation z” = (z — p)” + (z — 9)".paq
€ Z4,n > 2,yields roots of the form ((p + g) + y) where yis a non-integer zero of a
Cardano cubic polynomial of the form y* — 6pgy — 3pg(p+ g). This is a corollary to
Fermat's Last Theorem.  The characteristics of this family are illustrated for
n=3,4,...,9. For nodd, ygcan be represented by (n — 1)(2pg + e)%, and for n even
there are two real values of yg, (n—1)(2pg + e)%and — (2pg + d)%, where d, eare
real non-integer parameters. For a given n, e is simply related 1o p/a,p<g,and 10 a
parameter E which is linear in n. The corresponding curves indicate the non-integral
nature of y, n > 2.

1. INTRODUCTION
Babylonian mathematicians were familiar with cubic equations and the Iranian scholar
Omar Khayyam (1048-1122) solved many cubic equations with the aid of algorithms with

a conic section base [8). However, in the West Geronimo Cardano (1501-1576) seems to
have been the first to have published an analysis of the cubic equation [2):

2+ Pz+ Q=0 (1.1)

though Cardano admitted that he had obtained the hint for this from Niccolo Tartaglia
(¢.1500-1557) [1]. The solution of Equation (1.1) is given by

z=[-3Q+ (3@ + £P)i + [-1e- (@ + L PO (2

Equation (1.2) yields some interesting results. For example, with P= — 15 and
= — 4,

r=[24 (- 121)%]3 + [2 — (- 121)%)F, (1.3)

Cardano, unable to handle the square root of a negative number, called this result a casus
irreducibilis because he knew that z = 4 is a solution. This result, with all roots real,



occurs when 27Q? + 4 P2 is negative. When 27Q* + 4P > 0, one root is rcal and the
other two form a complex conjugatc pair.

In the present paper we show how a special form of the Cardano equation which does not
yield integer solutions can be related to diophantine equations which lack integer solutions.

2. THE CUBIC CASE

Consider the diophantine equation

S=(z-p)°+(z-q)’, pa€Zy, @2.1)
which can be rewritten as

3 —3(p+q)z* + 3(p+q)z— (P* + ¢°) = 0.
Now let
y=z—(p+4)
which is the standard way to produce
y® — 6pgy — 3pg(p+ g) = 0.

the canonical form of the Cardano cubic [11].

Next consider the real-valued function z defined by

z=1y* —6pgy — 3pg(p+ 9). (2.2)
Differentiation yields
gi = 3y% — 6pq. (2.3)
and so )
v = F(2pg)’ 24

at the maximum and mihimum where .
z=F4pg(2pg)* — 3pg(p+ q) (2.5)

respectively. Since . )
3pg(p+ q) > 6(pg)? > 4pg(2pa)’

z is always negative at these points as in Figure 1. (The figures are at the end of the
paper.) We show next that z crosses the z-axis only once.

Put P= —6pg,Q= —3pg(p+ g), and the original equation has the form of a
Cardano cubic equation:

0=1>+Py+Q 2.6)
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Since
27Q? + 4P = 27(pg)’ (9(P* + ¢°) — 14p0)),

9(p* + ¢*) > 7(F* + ¢*) > 14pa,

27Q% + 4P 2 0,

and

so that there are two complex conjugate roots, a3, a3, and one real root, a; [2]. The real
solution, according to Cardano, is then

ay = {1pal3(p+a) + (9(F" + q*) — 14?9)15 }l’l
2] 3

]
+ {1pgl3(p+ @) — (907" + g*) — 14pq)?]}

Some examples are shown in Table 1.

ay x E e

4.0545588 | 7.0545588 0.0272794 | 0.1098618
6.0000756 | 11.9909756 0.0181208 | 0.2184349
0.1128667 | 16.1128667 0.0376989 | 0.7610848
0 8751505 | 16.8751505 0.0157567 | 0.3796493
16.75478 30.75478 0.0623700 | 4.1806631
79 9205812 | 52.205812 0.0448158 | 9.2448633
04.165148 | 41.165148 0.0137623 | 1.9885941
85.076925 | 146.076925 0.0187861 | 33.520789
58.705402 | 119.705402 0.1350048 | 105.58106
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Table 1: Some Values for the Parameters
The parameters € and E are from the theory of equations as follows. Since two of the

roots form a complex conjugate pair, say a + bi, we can deduce from the sums of the
roots one and two at a time that

ve = 2((5/3) + 2pa)*. @.7)
For later generalization we re-write this as
Yo = 2(2pg + &), (2.8)
and )
yo = (E+2)(2p9)*- (2.9)
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3. THE QUARTIC CASE

Ludovico Ferrari of Bologna (1522-1565), a student of Cardano, discovered the general
method for solving quartics [6]. Consider now

A =(z-p)'+(z—9* pgeZy, 3.1)

which can be rewritten as

A —4(p+ Q) +6(F + ) —4(PP+ )z + (9 + ") =0
Now let
y=z—(p+9)
so that
vt —12pgy® — 12pg(p+ @)y — 2pe(2(p + 9)® —pg) =0. (3.2)

Next consider the real valued function z defined by

2=yt — 12pgy? — 12pa(p+ )y — 2p9(2(p+ )" —pa).  (33)

Differentiation yields
4 — 4y — 24pgy — 12pa(p+ 9) 3.4)

which at a stationary point of the curve (Figure 2) becomes the Cardano equation (2.2)

y* — 6pgy — 3pa(p+q) = 0. 3.5)
At the point of inflection
| 22 =12y — 24pg (3.6)
and
y= £ v(2pq). 3.7)

The gradients can be seen to be at their extremes where the curve crosses the g axis: nearly
horizontal for negative y and approaching vertical for positive y. The roots of Equation
(3.3) when z = 0 are two imaginary roots and

Yo (217(_1-}-::1)2 3(2pg + e)’

Table 2 gives examples and Figure 2 shows that the negative roots are very close 10 the
points of inflection.

plgld e
213 | 0.234004 | 0.3265045
34 |0.852977 | 0.56901

Table 2 : Examples for the Quartic
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As can be seen, apart from 3(2pg + e)%, there is an additional real root — (2pg + d)}.
Two such forms for the real roots are found for all even n. The negative root may also be
expressed by

o= — (D+1)(2pg)*

by comparison with (2.9) and with D+1=(01+ idﬁ)%a“d d=2pgD(D+ 2).

4. THE QUINTIC CASE

Paolo Ruffini (1765-1822) anticipated the general idea of a group and claimed to have
proved the insolvability of the quintic by radicals though it was Niels Henrik Abel (1802-
1829) who finally settled the issue to the satisfaction of the mathematical community [6].
Consider

= (z-p)°+(z—0)°, pg€ Zs, @.1)
which can be rewritten as

° —5(p+ g)z* + 10(p* + )z — 10(p® + q®)z?
+5(p+¢)z— (P +4°)=0.
Now let
y=z—(p+9)

o — 20pgy® — 30pa(p+ q)v* — 10pa(2(p+ 0)* — pa)y
—5pg(p+ q)((p+ ) —pg) =0.

so that

Next consider the real-valued function z defined by

2= —20pgy® — 30pa(p+ ¢)v* — 10pg(2(p+ @) — POy

— 5pg(p+ q)((p+9)* — pa) . (4.2)
Differentiation yields
% — 5¢* — 60pgy’ — 60pg(p+ q)y — 10pg(2(p + a)’ — pg) 4.3)

so that stationary points occur when

o — 12pgy® — 12pg(p+ q)y — 2pa(2(p+ q)* — pg) =0 (4.4)
which is Equation (3.2). So too
d?2

a? = 20y° — 120pgy — 60pg(p+ q) 4.5)

which at a point of inflection becomes the Cardano equation (2.2)
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y® — 6pgy — 3pg(p+ ¢) = 0. (4.6)

Examples are shown in Figure 3 and Table 3.

plg |z e E
2 131 19.0803408 | 0.3910001 | 0.0646443
3|4 | 26.8725894 | 0.6824871 | 0.0564752

Table 3: Examples for the Quintic

The one real root of Equation (4.2) with z = 0, is, as anticipated, given by 4(2pg + €) :.

5. THE GENERAL CASE

Consider now
"= (z—p)"+(z—9)",

which, as a polynomial in z, has coefficients (Macmahon([9))

1<2< A;=n(p+ q)
1 Y A4 =(7) +d)
<iKysn
Y AAA= (3 +4d) (5.1)

1<i<j<k<n
A1A2A3...;4; =p"+ q".
Then as before we can transpose to the form
z=(y+p)"+(+q "~ (y+p+a"

then, following Gould [4] we have
z=y"+ ZQ(’,’)(p’+ g —(p+a) )"

or

If we differentiate with respect to y, we find that in general

d’“ m n—m n—m n—m
gﬁ=ﬂ—{(y+p) +(y+ " " —(y+p+ " 7}

-
n
)]

v



in which n™ is the falling factorial cocfficient defined by

n2=n(n—1)...(n—-m+1), melZ,

so that
da’z m, n—m " m(n T -5 S ,n—r—m
R A B LB IWERE S
=2 s=1
and for
&3z
a7 =0
we have
3 r-1
0=1"— Z; Zil(n—r)g(',‘) (N v,
that is,

0=1¢" — 6pgy — 3pg(p+ 9)
which is the Cardano cubic equation. That the Cardano form of the cubic in Equation

(2.2) has no integer roots can be seen here to be a consequence of Fermat's Last Theorem.
The converse does not unfortunately hold since the Cardano cubic of the form

3 —3rsz+ (PP +5°)=0,r,s5€ Z,
always has at least one integer solution, £ = — (r + s). Not surprisingly with hindsight,
Cardano cubics were involved in the proof of Fermat's Last Theorem in the form of elliptic
curves (van der Poorten [12]). The graph of an elliptic curve is given by the points (z,v)
of the equation

v¥=z"+az+b

in which z, y, a, b, € K, where K is some field such that 4a® + 27b% # 0 Galbraith [3]
gives as examples of elliptic curves: i = z* — z over R and P =234+3z+ 7 over
F,;, the finite field of integers modulo a prime p>3. In the latter case
463 + 27b? # 0(mod17). More formally, the elliptic curve is defined to be the set

E={(z,¢):z,y€K Ay =23+ az+ b} U {Oz}
in which Og is the "point at infinity”.

For z = 0 and n odd in Equation (5.2) we always obtain a sct of complex roots and their
conjugates and one real non-integer root given by

o = (n—1)(2pg+ ). (5.3)

For n even there are two real non-integer roots, one in the form given in Equation (5.3)
and one given by
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Yo = — (2pg+ d)?.

Some examples of e, F, d, D as functions of n are shown in Table 3.

E

e

b2

p
2

0

0

0

d
4]

0.0181208

0.2184349

0.0405392

0.3265045

0.0097068

0.234094

0.064644

0.3909984

0.0895845

0.4338579

0.0103139

0.24881

0.1149973

0.4643973

0.1663886

0.5043568

0

0

0

0

0.0157567

0.3796493

0.0353548

0.56901

0.0176152

0.852977

0.0564752

0.6824871

(5.4)

.07 T
0.098*
0.1187*
0.139*

0.74489*
0.79040*
0.82084*
0.84125*

O 00| =] OO Y| | CO| DO ©] =] O] U il LI N[ 3

Table 3: Parameter Values; * estimates from E vs n line

The parameter E is linear in n for the range n = 3,4,...,9. This permits ygto be
estimated. If we assume that the linearity holds at n = 100, then £ = 2.274496 for the
<pg>set <2,3> and e= 0.55773 compared withe = 0.504357 atn = 9.

On the other hand the e versus n curve flattens very rapidly and approaches a constant
non-integer value for e. Furthermore, for n = 3, eversus p/g, p < g, vields a rectangular
hyperbola, with the value of e increasing rapidly when p < < g. The charactenistics of
these parameters explain the persistence of the non-integer status of g/,. For n = 3, e has

the form
64¢® + 64(3pg)e? + 144(pg)2e + 32(pa)® — 9(pg)*(p+ q)> =0

which yields one real non-integer value for e and a complex conjugate pair. Analogous
equations can be found for higher n.

6. CONCLUSION

At this stage what one would like are conveniently obtained approximate solutions of
Equation (5.2) which by the Harriot-Descartes Rule of Signs [11] cannot have more than
one positive root. To do this we modify Bernoulli's iteration [7]. In doing so we respond
to the speculation of de Pillis [10] about the generalisation of his observations on Newton's
formula for finding the root of a non-linear function when applied to cubic polynomials.
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The following outline is in the spirit of Cardano who was motivated to find approximate

solutions of polynomial equations [5].

With Bemoulli's method for finding the dominant zero of f(y) of degree n, onc has

simply to calculate f(n), f(n+ 1), f(n+2), giving £(0), f(1), £(2),.... f(n—1)
any set of values, but preferablyl,§, €2,...,€71 and then take f(y+ 1)/f(y) as an
approximation to the dominant zero. For notational convenience we re-write Equation

(5.2),z=0, as
v= ZPJU"_j-
=1
Then
n—1 )
Wr = Z Qf'JgJi
=0
where
Qr,o = Ppu, and Qo,m = Ppm,
B 0, m>nm<0,n<0,
Qr,m - Qr—l,m—l + P —mQr—l,n—l ’ 0<m< n,
and

n
% =3 P n>0,
=1

with o, = 0, n < 0, and ug = 1.Some examples of Q,are given in Table 4.

m= |0 |1 [0 [1 |2 [O |1 |2 |3
r=0(1 [1 |1 {1 |1 |1 |1 |1 |1
1 1 (2 |1 |2 |1 [1 {2 |2 |1
2 2 3 |1 |2 |3 |1 |2 |3 |1
3 3 |5 |3 |4 |5 |1 [2 (3 |4
4 5 [8 |5 |8 |9 |4 |5 |6 |7
5 8 (1319 [14[17 |7 [11]12]13
6 1321 (1726|3113 |20 (24|25
7 21 13431 |48 |57 |25 |38 |45 |49
n 2 12 |3 |3 (3 (4 |4 |4 |4

Table 4: Q,, for n=2,3,4 and P;=1

Proof of (6.2): We use induction on r. For r = 0,
n—1 n—1 .
ZQO.Jy’ = an—jif, = yn+0.
=0 5=0

Assume the result is true forr =1,2,3, ..., s.

(6.1)

6.2)



n—1
=) Q!
=0
n—2
= Qs,n—l yn + ZQS,J yJ-H
=0

n—1
= Qs,n—lyﬂ 7+ ZQs,j—l y7
=0

n—1 . n-1
= Qs,n-—ly‘ + ZQ5+1,j—1 y’ - Z F, b Qs.n—-lyJ
7=0 7=0
n—1 . n—s
= Qs,n—l!fl - Qs,n—lzpn—ij + ZQ5+1,j—1 yJ
7=0 =0
n—1 )
=2 Qs41,, ¥ as required.
=0
For example, consider the Cardano cubic
¥ =y+1.

Y =v +y+]

P =9 +2y+1

From Table 4 we have

and

and Bernoulli's iteration would give 3,%/¢° as an approximation to the dominant root a.
Result (6.2) enables us to accelerate the iteration and speed up the convergence to yield

y*® = 17062537 + 226030y + 128801
and

Y49 = 22603037 + 299426y + 170624,
so that

1.324717957 wheny = 1,
a= { 1.324717955 wheny = 2,
1.324717973 wheny = 1.3.
This enables us to find the dominant root quickly. The presence of a non-integer root does
not mean that there are no integer roots, except in the cases covered by Fermat's Last
Theorem.
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In[3¢):= £1P_, @, ¥ ] =y*3-6+prQey-3epwqe (P+qQ)
our[3dj= -3pQq(p+q) -6pgy~y
In[¢2]:= a=Plot[f[2, 3, ¥], {y, -14, 14}, PlotRange -> {-700, 800)]
b=Plot[f[3, 4, y), {y, -14, 14}, PlotRange -> {-700, 800}]
Show|a, b)
800
600
400

200 ]
Figure 1

Oucz[¢3)= - Graphics -

Inf¢sl:= £[p_, @, ¥ ] =y*4-12+DP*xQsY*2-12+DsQw (P+Q) *Y+2»DsQ+ (DvqQ-2+ (p+Qq) ~2)
ourlédi= 2pqipg-2 (P+q@?) -12pg (P~Q y¥y-12pGgy «y*

In[é8]:= c=Plot[£[2, 3, y]., {y, -15, 16), PlotRange -> {-20000, 10000}]
d=Plot[£[3, 4, v], {¥, -15, 16}, PlctRange -> {-20000, 10000}]

Show[c, 4]
\ ".OOOOE'
I a
5000: b
| Figure 2
-35 --C
Ouc[:0)= - Graphics e
Inf2Z):= £lp_, @, ¥Y.) =¥*5-20+pwqgey*3-30+p»Q»(P+Q)+y*2+
10«p+*g= (P Q-2 (P+Q) *2) »Y-5+DP+Q» (P+GQ) ((P+Q)*2-p~Q)
a=Plot[f[2, 3, y], {¥y, -20, 24}, PlotRange -> {-500000, 400000} ]
b=Plot[£f[3, 4, ¥), {¥, -20, 24), PlotRange -> {-500000, 400000}]
Show[a, b]
400000
.
20C000¢ b
/ . Figure 3
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