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Associated Legendre Polynomials and Morgan-Vojce Polynomials
A. F. Horadam
The University of New England, Armidale, NSW 2351, Australia

1. INTRODUCTION

Sets {X,}
A general class of polynomial sets {X,(z)} is defined recursively by (Xa(z) = X,)
Xo=(24+2)Xn-1 — Xn_2 (1.1)
with
Xo=a,X; =b (a,bintegers). (1.2)

Particular cases arise in the following ways:

Ax O b
(B) By 8 1
(b) b 1 1 (1.3)
(C) Cn 2 24z
(¢) & -1 1

Cases (B), (b) give the Morgan-Voyce polynomials whilst (C), (¢) produce polynomials
closely related to them. Detailed features of polynomials (B), (b), (C), (c) are developed
in [1].

Associated Legendre Polynomials
Riordan [3] derives some properties of, in his nomenclature, the associated Legendre

polynomials p,(z) and related polynomials 7,(z). In our notation, we find that
Pn(T) = bnya(z) (1-4)
and
Ta(z) = Bata1(z). (1.5)
Chebyshev Polynomials
From [1], we know that if U,(z) and T,(z) are Chebyshev polynomials then

Bi(z) = U (2£2), (1.6)
bo(z) = Ua (2F2) - v (2£2), (1.7
Cu(z) = oT, “52), (1.8)

w@) = U (32) v (2F2). (19)
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Chebyshev polynomials U,(z) and T,(z) are orthogonal polynomials associated with
the interval (—1,1) with weight functions (1 —z2)% and (1 — z)~% respectively. Wherever
it is sensible to do so, otie might hereafter make a mental connection between the Morgan-
Voyce polynomials and the Chebyshev polynomials.

Fibonacci and Lucas Numbers

Immediately from [1, (4.1) - (4.4)] with z = 1, we obtain

Bu(l) = Fin, (1.10)
ba(1) = Faayr, (1.11)
Ca(l) = Lom, (1.12)
cn(l) = Lz (1.13)

where F, and L, are the nth Fibonacci and Lucas numbers, respectively.

Equation (1.11) tell us that, when z = 1, Riordan’s associated Legendre polynomials
transform into odd Fibonacci numbers.
Purpose of this paper

Our objectives here are twofold:

(I) to examine some of the results in [3] from a different perspective, by means of (1],

and

(II) to extend Riordan’s results, where applicable, to (C') and (c).

2. REQUISITE BACKGROUND

From [1] we reproduce in summary some basic facts.

Generating Functions

“ofn+1+k\ 4
Bl = ( ) (21)
N ,;, 2k +1
" (n+k
bn+l(I) == Z( 2% )Ika (22)
k=0
_ z 2n n+k k n+1
Coni(e) = kz_:_on-}-l—-k(n—k)z BE S
Woan41 n+k—l) b
= = e 2.4
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Binet Forms

Buz) = “22, (2.5)

b(e) = RO )b ), (2.6)

Ca(z) = o"+p", (2.7)

ea(z) (1 +ﬁ)a";(1 +a)p" = Bulel o B slidl, (2.8)
where a=z+2+;ﬂ4}+—z2,ﬁ=z+2-;/4x+_zz’ 29)
so that |

ef=la+f=z+2,a-f=Viz+22=A=/(z+2)2-4. (2.10)

Combinatorial Forms

Blz.y) = Y. B(ely = [1-@Faw=9] " =5, (2.11)

b(z,y) = 5: bi(z)y ' =(1-y)1-C+ )y y’]-1 =b; (2.12)

C(z,y) = i Cilzly™' =2+z-2) [1-2+2)y - y’]_l =C, (213

c(z,y) = o_o @)y =(1+y) 1 -T2+ 2)y- y"’]~l = (2.14)

whence

b = (1-y)B=2B-c¢, (2.15)

' = (2+z—2y)B=2(1—y)B+:rB=Qb+:cB, (2.16)

c = (1+y)B=[2-(1-y))|B=2B —b. (2.17)

Corresponding to the symbolism [3]

f)=Q1-y-y»)7, (2.18)

the generating function for Fibonacci numbers, we introduce the notation

9y =1 -y+y*)™. (2.19)

Incidentally in passing, the function
f=flzy)=1-Q2+z)y+y (2:20)
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satisfies the partial differential equation

) d
'(1+§—y)-é-£-—y a—'£=0. (2.21)

3. SOME NEW PROPERTIES OF {X,(z)}.

From (2.15)-(2.17) we deduce, e.g., that symbolically

c+b = 2B, (3.1)
C-2 = zB, (3.2)
c—b = 2B, (3.3)
be = (1—y?)B?=B*-(yB)?, (3.4)
F+b = 201+y))B* =2[B*+(yB)}, (3.5)
?—b = 4B-yB. (3.6)

Instances of these identities are, e.g., cf. [1],

Cs(z) — 2b3(z)
bs(z)cs(z) = 5+ 20z + 21z% + 82° + z* = Bi(z) — Bi(z) (mote),
A(z)+b3(z) = 2(1+4+ 4z +2% =2[BX(z) + Bi(z)),
c(z) — bi(z) 4(2 4+ z) = 4B,(z) - By().

z(3 + 4z + z?) = zB3(z),

Observe the mild subtlety occurring in (3.3)—(3.6), namely, that the existence of the
factor y with B necessitates a reduction by 1 of the subscript in the corresponding poly-

nomial.

4. B,(x) AND b,(x)

Firstly, we quote two results form [3,pp.88-89], in our notation.
(2]

Theorem 1: B,4i(z) = Z (n ; k) IR e (| of
k=0

Proof: Proceed from (1.1) by induction on n and apply Pascal’s (combinatorial) formula

with a little algebraic refinement.

Th 2: Bpya )_%(2+ )n—2k2—n+2k(_1)k[§%(n+1)(j)
eorem 2: Bpiq(z --k=o T = 2i+1)\k)"

Proof: Start from (2.5) and re-arrange terms.
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(3] - B
Corollary 1: ) (27;‘:11) (i) — gn-2k (n . k), F=01,.... [g]

=k

Proof: Combine Theorems 1 and 2, taking z = —1.

Rivlin [4, p.35] lists Theorem 1 in a simplified form as Exercise 1.5.13, where (1.6)
underpins the relationship. Also see [2,p.257).

Now, from (2.11), following [3] we obtain

B(z,0) = 1, (4.1)
B(0,y) = (1—y>"=§ny"-1 [= (0,92 (4.11)], (4.2)
B(l,y) = (1~3y+y’;:‘, (4.3)
B(LyY) = (1-%2+y")" = i Fansay™ (c£.(1.10)) (4.4)
= v 5 1) - S(-y)] by (218) (4:42)
Furthermore,

B(-lL,y) = (1-y+¢) 7' =Q1+y)Q+>)

== Z(_l)n(y3n 5 y3n+l s 0- y3n+2), (45)
n=0
whence, with (2.1), Theorem 1, z = -1, and n — 3n, n — 3n+1, n — 3n+ 2 in

turn, we deduce by comparing coefficients [3] that

3n [37"]
n+k x 3n -k x
S (e =2 (e

(=1)" = Banp41(-1), (4.6)

e k=0

oY ey (ST o (v (ST

fet 2k +1 k=0 k " | |
3ni? (371 +k+ 3)(_1)1: _ = (3” L k)(—l)" = 0= Bsnya(-1).  (4.8)
=\ 2%+1 k=0 :

Hence, = + 1 is a zero of Bj,;3(z).

Combining (2.1), (1.10) and Theorem 1 yields

< (n+k S B=

b(z,0) = 1, (4.10)
b(0,y) = (1-y) =3 y", (4.11)

n=0
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bly) = (1-9)(1-3y+)7" = %[f(\/' +1(=val, (412)
b(1,9%) = (1-3")(1-3y"+¢") ZF2n+1y (cf. (111)).  (4.13)
Moreover, (2.12) leads to
b(-ly) = 1-y)(l-y+y") ' =01-y)1+y)" (4.14)
= go[( 1)"y™ +0 -y (-1) ™ (4.14a)
whence, by (2.2) ”
3n n
b (1) = ):(3 2:")(—1)"=(—1)", (415)
k=0
ol Bn 14K\, .
bansa(—=1) = Z%( . )( =10 (4.16)
3n+2 n
banss(—1) = Z (3 gz+k)( )" = (- ™ (4.17)
k=0

5
in accordance with [3]. For example, (4.17) yields bg(—1) = > (5;;:)(—1)" =11
k=0

concurrence with bg(z) = 1 + 15z + 3522 + 282> + 9z* + z° at z = —1. Notice that z +1

is a zero of byn41(2).

Invoking (2.19), we readily calculate from (4.12) that

b(-1,y) =3 lg(t\/_ (-ivy)] (@ =-1) (4.18)

5. Cu(x) AND cy(x).

Turning next to (2.13), we have immediately that

C(z,0) = 24z (5.1)
C(0,0) = 2 (5.2)
C0,y) = 21—-y)" =2 2-: y™ = 2b(0, ) (5.3)
Cly) = G- [1-3+v"]" (5.4)
while
C(-1,y) = (1-2)(A+y)1+")" =(1-y-2)1+y)" (5.5)
= Y [0+ (C)TT 2(~1)"+1y* 7] (5.5a)
n=0
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whence

n n+1 In+k
" ] - —1\" = _1)\k _1\n+1
ntl 3n4+2 [In+1+4k
= = n+1_ _1\k _1\n
Cantal=1) 223n+2 k(3n+1—k>( P+ (=17 (57)

3n+2
3n+3 (Bn+2+k
Cang3(—1) = 2 1"+1_2 —1)k 4 (—1)7H
So, C4(=1) = =1 in accord with C4(z) = 2 + 16z + 20z? + 82° + z* when z = —1.
Equations in the second and third columns of (5.6)-(5.8) can be slightly simplified by
transferring the term in (—1)*. Obviously, Cant2(—1) = 3Canta(—1) = =Cansa(-1).
One may also confirm that
ClLy?) = (3= 2L =342 + 57 = 3 Lanpay™ (cf. (L12). (5.9)
n=0

Lastly, (2.14) reveals that

c(z,0) = 1, (5.10)

0,y) = (1+y)1-y")7 =1-y)7 =50,y), (5.11)

(ly) = 1+y[l-3y+y’7", (5.12)

whereas

(-1,y) = Q+yll-y+y 7 =0 +y)’Q+y)" (5.13)

= z-:()[(_l)ny3n+2(_l)ny3n+l+(_1)ny3n+2] (513&)

generating -
n_ H6n+1(In+k-1 -
eamaa(—1) = ()" = kgl 2k—1(3n—k+1>(_1) ) (5.14)
i) = 217 =3 2N U )
0 in n+k
cmis(-1) = (-1 = ngff(ﬁmf_ [l (5.16)

That is, for example, cs(—1) = =2 = [9 + 30z + 27z? + 92° + z%];=—;. In summary,
cant1(—1) = cans2(—=1) = cnsa(-1).
Ultimately, it follows that

o(1,v?) = 1 +y)[1 -3y - v') ZLQ,,.Hy (cf.(1.13)). (5.17)

n=0
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Summary for X, (-1)

Collecting the data for X,,(—1) - refer to (1.3) - we have the ensuing striking tabular

information, writing (=1)" = k,

m
Xm(-1) 3n 3n+1 3n+2
Ba(-1)] 0  k k
bm(-1) | &k 0 (5.18)
Cu(=1|2k & i
em(=1) | =k k 2k.

Special features of this table are
(1) Xans1(-1) = (=L

(i1) the interchanges B ¢ b,C ¢ ¢ for column 1 + column 3,

(1)) 3 Xonsi(~1) = 2K,

1=0

(iv) D_(=1)'Xan4i(=1) = 0,

1=0
i.e., Xans2(=1) = Xans1(=1) = X3a(—1) (recurrence).

Periodicity occurring for {Xm(—1)} is mentioned in [1], along with other numerical
values arising form the set {X.»(z)}. More detailed information on this numerical aspect
is to be found in [5].

From (iv), Xant+1(—1) = Xan(—1) + Xan42(—1) which is a typically important result
in our investigation of three successive terms of more general polynomial sequences. See
(6.4).

Setting z = —1 in (1.3), we always have X;(= b) = 1 leading to the specific values %1
for Xant1(—1) in (i).

6. AFTERMATH

It would be richly rewarding if compact results for bn(z),Cn(z), and cn(z) involving
powers of 2 + z corresponding to these for Bn(z) (especially that in Theorem 1) could
be discovered, but such properties, if they exist, are currently elusive. However, a partial

achievement is probably better than no achievement at all.
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Now

basilz) = (1+ x) (.1:) — Bn_1(2) by [1,(3.29)]
=(2+ﬂ34ﬂ-0&ﬂ 1,(3.7)]
22
n—-1-k " m—-1(n+k-2
= 2 n-2k - k _ k-1
EO( B )( + z)""*(-1) g_—Qk—l( ok )x (6.1)
by [1, (3.23)]. The first portion of (6.1) contains powers of 2 4+ z; the second portion does

not, though c,(z) is the sum of two such expressions.

Next
Ca(z) = (24 z)Ba(z) —2Bn by [1, (3.31)]
(| e ] e -
= 9 n— 2k _
?‘:‘o ( L )( + z) 2 Z
(" - 2 B k) (2 +z)" "2 (-1)F (6.2)
while
enr(z) = (3+2)Ba(z) ~ Baa(a) by [1, (3.30)]
= (24 2)Ba(z) + ba(2) by [1, (2.13)]
(=
= > ( }c k) (2 + 2)"2*(=1)* + ba(2) (6.3)

where b,(z) is derived from (6.1) by adjustment.

Thus, each of (6.1), (6.2), and (6.3) is expressible as sums of functions involving 2 +z
which seemingly do not simplify into a single condensed form. This may be as good as it
gets. One should be thankful for small mercies.

Perhaps it is significant that Riordan [3] does not offer any compact Theorem 1 coun-
terpart of Bn41(z) for his associated Legendre polynomials b4(z).

Despite the limited accomplishment in (6.1)-(6.3), some comfort can be gleaned by
considering a useful polynomial defined in terms of B,4:(z) and Byl

Suppose, then in conclusion, we introduce the polynomial

B;(z) = Bas1(z) + Br-a(2). (6.4)

Accordingly,

Biz) = 3 ( B k) (2+ 2]~ (1)
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[+]<n—2—k

r )(2 3 PR I by Theorem 1

Il

8] 7 _
(" B 1k" 2k) (2 4 z)" 2% (=1)* (6.5)

on expansion and employment of Pascal’s formula, coupled with a little algebraic manip-
ulation. Our expression (6.5) is now precisely analogous to that in Theorem 1. Similar,

though less elegant, results flow from b;,(z), C;(z), and c;(z) defined as in (6.4), with

n

appropriate algebraic maneuvering.
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