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Abstract

By using the geometry of a pythagorean triangle with a circle inscribed, it can be proved by
a simple geometric proof that the area of such a triangle can never be a square. The class
structure of the modular ring Z, can be used to illustrate the result for various Pythagorean
triples.
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1. Introduction

By using his method of infinite descent, Fermat was able to prove that the area of a
Pythagorean triangle can never be a square [1]. This result has also been illustrated in the
context of the structure of the modular nngs Zsand Zg[3]. In the present paper we
provide a simple trigonometric proof by utilising the properties of an incircle of right
triangle.

2. The Square Free Nature of the Area of the Right Triangle

Let the area of the triangle ABC be represented by S and the radius of the inscribed circle
by r with centre at O. Then
S = ABOC + ACOA + AAOB

= %r(a+b+ C). (2.1)
The straight lines OA, OB, OC bisect the angles A, B, C respectively, so that
a = r(cot(B/2) + cot(C/2)) (2.2}
b= r(cot(C/2) + cot(A/2)) {(2.3)
c = r(cot(A/2) + cot(B/2)) (2.4)

Hence [4:78],
a+ b+ c=2r(cot(A/2) + cot(B/2) + cot(C/2))
and
S = r?(cot(A/2) + cot(B/2) + cot(C/2)). (2.5)
But
1(A+ B+ C) =90°,



cot(A/2) + cot(B/2) + cot(C/2) = cot(A/2)cot(B/2)cot(C/2), (2.6)

and

S=r? (cot(A/2)cot(B/2)) 2.7
since ZC = 90°.
Then, using Equation (2.6), we get

S=r(z(z+1)/(z—-1)) (2.8)
with z € {cot(A/2), cot(B/2)}.
Because of its form

f(z) =22

will not be an integer except for 1 < z < 3, when f(z) = 6. If the denominator is a
square, say m?, then z =1+ m? and the numerator becomes (m? 4+ 1)(m? + 2),
which cannot be a square. Hence, S cannot be a square.

3. Within the Modular Ring Z;
Z has four equivalence classes, %, and the integers N are given by

N=4R +1 (3.1)

where R, is the row containing N, i € {0,1,2, 3} asin Table 3.1.

Class 0 1 . 3

RO‘!.U, R 4RQ 4R1 +1 4R2 + 2 4R3 +3

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15
Table 3.1

Since cot(A/2) =s/(s—b), cot(B/2) = (s —b)/(s—c), with s= %(a+ b+ c)
[4],

S=ri(a+b+c)/(a+b-c). (3.2)
But (a+ b—c) = 2rand (ot b+ c) = 2(r + c) so that
S=1r?+ecr. (3:3)

As shown previously [3], S must be even and in class 0, if it is a square. Hence, S = 4Ry
in this case. On the other hand, ¢ is odd and in class 1. If S is a square in O, then Romust
be a square. Thus the two class sets we need to consider for Pythagorean triples
<c,ba> are <1,0,1> and <1,0,3 > [3].



3.1 r odd.

This will occurin < 1,0,3 > . Ifr € 1, then S € 2 which contains no squares. Hence,
r € 3if Sis asquare. Substitution of r = 4R3 + 3 ande = 4 R; + linto Equation
(3.3) yields

Ry =4(R} + RiRs + ;(TR3 + 3Ry)) + 3 (3.4)
Ry = A(R3 + Ry Rs + ;(TRs + 3R;+1))+2 (3.5)
Ro=4(Rj+ RiRs + ;(TR3 + 3Ry + 2)) + 1 (3.6)
Ry =4(R3+ RiR3 + ;(TR3 + 3R, + 3)) (3.7)

Equations (3.4) and (3.5) cannot give squares as Classes 2 and 3 do not contain squares, so
Equations (3.6) and (3.7) are the only valid ones if the area in question is a square. In this
case, when Ry is odd it lies in the row Rg + RyR3 + %(7R3 + 3R; + 2) which must
be even if Ry is a square, and R;and Rzmust have the same parity for integer solutions.
When Rgis even and a square it will be given by Equation (3.7), and the row
Rg + Ry Ry + %(7 Rs + 3Ry + 3)has to be a square with R, and Rjof opposite parity.

Table 3.1 shows the characteristics of a few triples in , < 1,0, 3: > . For instance, with
r€ 1, S € 2 which contains no squares. For triples with r € 3 and S € 0, most have
Ry € {2, 3} which contains no squares.

Triple r |re | S Se | Ry Ry e | f(z)
<5.4.3 > 1 (1 6 2 6

< 37.35,12 > 5 |1 210 (2 42/5
<17,15,8 > 3 [3 |60 0 |15 |3 20/3
< 65,63,16 > 7 |3 504 0 126 |2 72/7
< 25,24,7 > 3 |3 84 0 21 1 28/3
< 305,224,207 > |63 |3 23184 | 0 5796 | 0 368/63

Table 3.2: <1,0,3 >
32 r even.
This will occur in < 1,0,1 >. Ifr€ 2, S 2 as well and cannot be a square. With

r € 0, and in a row of Table 3.1 that falls in {2, 3}, again Rycannot be a square. Some
of these triples are illustrated in Table 3.3.



Triple r re | S Se | R Ro € | f(z)
<13.12.5 % 2 2 30 2 13
< 85,77,36 > 14 2 11386 2 i
<29,21,20 > 12 0 492 0 123 3 45
< 21089,20961,2320 > | 1096 (0 |24314760 |0 | 6078690 |2 s
< 32777,32745,1448 > | 708 |0 | 23707380 |0 |5926845 |1 23482
< 233,208,105 > 80 0 25040 0 6260 0 i

Table3.3: <1,0,1 >

We note by way of conclusion that values for f(z)are given in Tables 3.2 and 3.3 so that
we canseeif z € Z and (z — 1) = m?, then

f(z) =1+ m?)(2+ m?)/m?.

If m is odd, then (1 + m?) € 2and (2 + m*) € 3, so that the numerator falls in 2 and
can never be a square. If m is even, then (1 + m?) € 1T and (2 + m?) € 2, so that
again the numerator falls in 2 and cannot be a square. When z = p/q, p, q € Z, then,
assuming the denominator g(p — q) is a square m?,

f(z) = (¢* + m?)(2¢® + m?)/(mg)”.

For the set < 1,0,3 > the numerator is even ard denominator odd, so m and g are both
odd. Hence the numerator falls in Class 2 and cannot be a square; that is,

(@+m2P +m)e(I+D2x1+1)=2x3=2.

For the set < 1,0, 1 > the numerator is odd and the denominator is even, so that g and
m must both be even and (m?/q) odd. In the form given above, the numerator of f(z)
now falls in Class 0 but the row cannot be a square; hence the numerator cannot be a
square.

Exercises arising from this could involve finding the non-Euclidean analogues [cf 2:
Chs.8,9].
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