NNTDM 5 (1999) 2, 80-82

ON THE 22-nd, THE 23-th, AND THE 24-th SMARANDACHE'S PROBLEM Krassimir T. Atanassov

CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria e-mail: krat@bgcict.acad.bg

The 22-nd problem from [1] is the following (see also Problem 27 from [2]): Smarandache square complements:

$$1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 2, 33$$

$$34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61,$$

$$62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2, \dots$$

For each integer n to find the smallest integer k such that nk is a perfect square. (All these numbers are square free.)

The 23-th problem from [1] is the following (see also Problem 28 from [2]): Smarandache cubic complements:

$$1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, \\9, 5, 676, 1, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, \\1849, 242, 75, 2116, 2209, 36, 7, 20, \dots$$

For each integer n to find the smallest integer k such that nk is a perfect cub. (All these numbers are cube free.)

The 24-th problem from [1] is the following (see also Problem 29 from [2]): Smarandache m-power complements: For each integer n to find the smallest integer k such that nk is a perfect m-power $(m \ge 2)$. (All these numbers are m-power free.)

Let us define by $c_m(n)$ the m-power complement of the natural number n. Let everywhere below $n = \prod_{i=1}^k p_i^{a_i}$, where $p_1 < p_2 < ... < p_k$ are different prime numbers and $a_1, a_2, ..., a_k \ge 1$

are natural numbers. Every one of the three problems is related to determining of the form of $c_m(n)$ for arbitrary number n. When m=2 we obtain

$$c_2(n) = \prod_{i=1}^k p_i^{b_i},$$

where $b_i \equiv a_i \pmod{2}$ and $b_i \in \{0,1\}$ for every i = 1, 2, ..., k.

We shall prove that the following properties hold for function c_2

(1) For every natural number $n: n \geq c_2(n)$;

(2) For every natural number
$$n$$
: $n = c_2(n)$ iff $n = \prod_{i=1}^k p_i$,

for the different prime numbers $p_1 < p_2 < ... < p_k$;

(3) For every natural number n: $c_2(c_2(n)) = c_2(n)$.

The validity of these assertions is checked easily.

If
$$n = \prod_{i=1}^{k} p_i$$
 for the different prime numbers $p_1 < p_2 < ... < p_k$, then, obviously, $n = c_2(n)$.

On the other hand, if $n = c_2(n)$, then for every $i \ (1 \le i \le k) : a_i = b_i$. But $a_i \ge 1$ and

$$b_i \leq 1$$
. Therefore, $a_i = b_i = 1$, i.e., $n = \prod_{i=1}^k p_i$.

The check of (3) can be performed as follows. Let

$$c_2(n) = \prod_{i=1}^k p_i^{b_i},$$

where $b_i \in \{0,1\}$ for every $i \ (1 \le i \le k)$. Let

$$c_2(c_2(n)) = \prod_{i=1}^k p_i^{d_i},$$

where $d_i \in \{0,1\}$ for every $i \ (1 \le i \le k)$.

Now, if for some i $b_i = 0$, then $d_i = 0$, too; and if for some i $b_i = 1$, then $d_i = 1$, too. Therefore,

$$c_2(c_2(n)) = \prod_{i=1}^k p_i^{d_i} = \prod_{i=1}^k p_i^{b_i} = c_2(n).$$

When m = 3 we obtain

$$c_3(n) = \prod_{i=1}^k p_i^{b_i},$$

where $b_i \equiv -a_i \pmod{3}$ and $b_i \in \{0,1,2\}$ for every i = 1,2,...,k.

Immediately it can be seen that none of the above three properties is valid for c_3 . Now holds the property

(2') For every natural number n:

$$c_3(n) \neq n$$
.

Indeed, for the a_1 there are three cases (the same is valid for $a_2, ..., a_k$, too): case 1: $a_1 = 3s + 1$ for some integer $s \ge 0$. Then $b_1 = 2$. If s = 0, then p_1 is a divisor of n, but p_1^2 is not a divisor of n, while p_1^2 is a divisor of $c_3(n)$; if s > 0, then p_1^3 is a divisor of n, but p_1^3 is not a divisor of $c_3(n)$;

case 2: $a_1 = 3s + 2$ for some integer $s \ge 0$. Then $b_1 = 1$. Therefore p_1^2 is a divisor of n, but p_1^2 is not a divisor of $c_3(n)$;

case 3: $a_1 = 3s$ for some integer $s \ge 1$. Then $b_1 = 0$. Therefore p_1 is a divisor of n, but p_1 is not a divisor of $c_3(n)$.

Finally, when $m \leq 2$ is an arbitrary natural number, then

$$c_m(n) = \prod_{i=1}^k p_i^{b_i},$$

where $b_i \equiv -a_i \pmod{m}$ and $b_i \in \{0, 1, 2, ..., m-1\}$ for every i = 1, 2, ..., k.

If m is an even number, the above property (3) is valid. Property (1) now has the form: (1") If for every i=1,2,...,k has the form $p_i=[m.s+\frac{m}{2}]$, or $p_i=[m.s+\frac{m}{2}+1]$, or ..., or $p_i=m.s$, where [x] is the integer part of the real number x, then

$$n \geq c_m(n)$$
,

but the opposite is not always valid.

Also, in this case the equality (2) has the form:

(2") For every natural number n:

$$n = c_m(n)$$
 iff $m = 2s$ for some natural number s and $n = \prod_{i=1}^k p_i^s$,

for the different prime numbers $p_1 < p_2 < ... < p_k$.

The validity of the following equalities is easily proved:

(4) For every natural number n:

$$n^3 = c_2(n).c_3(n) \text{ iff } n = \prod_{i=1}^k p_i^s,$$

and

(5) For every three natural numbers n, p, q:

$$c_p(n) = c_q(n)$$
 iff for every $i = 1, 2, ..., k$: there exists a natural number s , such that $a_i = pqs$, or $a_i = pqs - 1$, or $a_i = pqs - 2$, or ..., or $a_i = pqs - min(p,q) + 1$.

REFERENCE:

[1] C. Dumitrescu, V. Seleacu, Some notions and questions in number theory, Erhus Univ. Press, Glendale, 1994.

[2] F. Smarandache, Only problems, not solutions!. Xiquan Publ. House, Chicago, 1993.