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Abstract

It has been suspected that if Fermat did indeed have a simple proof for his
famous 'last theorem', that he probably employed his method of infinite descent.
In a renewed attempt to see how Fermat might have thought that he had proved
that if ¢ = a" + b%, a,b,¢c,n € Z, n > 2, then a, b, ¢ cannot all be integers,
we set ¢ = a+ b+ m, m € Z, and then raised it to the nth power. The roots
of the resulting polynomial in m appear to be — (a + b) only when n # 1,2,
and the result might have seemed to Fermat to follow from this. The plausibility
of the algebra developed here is considered in the context of the work of the
sixteenth century mathematicians, particularly Cardano and Bombelli.

AMS Classification Numbers: 01A45, 11D41
1. Introduction

Now that Andrew Wiles and Richard Taylor have proved Fermat's Last Theorem, but with methods
quite undreamt of in the seventeenth century (cf. van der Poorten, 1996), one might legitimately
suggest a hypothetical search for Fermat's lost proof, if indeed a valid one ever existed. Velleman
(1997) in fact goes further by questioning whether a correct proof guarantees that the theorem 1s
true: he asks, for instance, whether we should be convinced by Wiles' proof that no counter-example
will ever be found, or merely that if the Zermelo-Fraenkel set of axioms is consistent then no
counter-example will be found.

This is not an attempt to prove the theorem, but to renew speculation about Fermat's possible
attempts of which modem commentators have possibly erred on the side of harshness in their
judgement of him.  The historical approach adopted here 1s, as yet. relatively uncommon among
historians of mathematics, though it has been used by some professional historians over the last
quarter century. The motivation ascribed by Riemer (1998) to the historian Jill Ker Conway, for
instance, was that she found the traditional approach in history "far too dry, far too unimaginative,
scomnful of the intellect, chained to the study of historical 'fact’. unable to break free of the tyrrany of
documents and data into a more speculative world".

Pierre de Fermat (1601-1665) was a lawyer by profession and served in the Parlement 1n Toulouse.
He was an 'amateur’ mathematician in the best sense of that term if we reflect that 1t comes from the
Latin amare (10 love). "Fermat published almost nothing but instead made known his results in



letters to a French priest, Marin Mersenne. who then passed them on to others. Fermat's own
edition of Diophantus' text was published posthumously in Toulouse in 1670. His own works did
not appear until 1679 in his Varia Opera Mathematica” (Hillman and Alexanderson, 1978).

Fermat's failure to publish in the modern sense has meant that he has not received due recognition at
times for his achievements, which include the discovery of the basic idea of analytic geometry at
least a year before the publication of Descartes' La Geométrie. Furthermore, Laplace (1749-1827)
described Fermat as "the true inventor of the differential calculus” since in the 1630s he invented
methods for calculating maxima and minima for certain curves, and his treatment of the 'generalized
parabola’, y = z", 1s operationally identical with the procedure of modern differentiation.

It seems possible that Fermat, in considering his 'last' theorem, could have begun with the following
polynomial, although not with the terminology or notation used here of course.

2. Polynomial in m
Suppose for a, b, ¢, m € Z that

c=a+ b+ m.
Then

= ((a+ b) + m)",
which can be expanded:

" —a"— b= P(m)

where P(m) is a polynomial given by

n-1

P(m) =" (3)(a+ ymms 4 T (Do,

7=0

If c*=a"+b", n>2,then we have a polynomal equation P(m) = 0 with roots
Qy, @9, ...y Oy, SO thatsince n > 2

—n{a+b) = Yo (2.1)
=1
and
n-1 n .
(3)@a+b)’ =% ¥ aa, (2.2)
=1 7=1+1

We now square both sides of (2.1):

n n-1 n
n*(a+b)’ =Yl +2% & e
=1

=17=1+1

which we multiply through by (nn — 1) /2 (since n # 1) to obtain
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ln?(n—1)(a+b)" = }(n- )Ea F -1 3 aa, (2.3)

=17=1+1
Multiply (2.2) through by n to yield
Ln?(n—1)(a+b)’ —nz Z Q. (2.4)
=1 =141
We then equate the right hand sides of (2.3) and (2.4):
n n-1 n
(n=-1)T? =2) ¥ aa, (2.5)
=1 =17=1i+1
3. Speculation
We now speculate on how Fermat might have proved that ) = a3 = @3 = ... = Qn. Suppose on

the contrary that

:aﬂ+Bli 02:Qn+ﬁ2'03:a11+ﬁ37"'1aﬂ—1 :an+ﬁn—]'

Substitution of these values into (2.5) gives

n-2 n-1
(n- 1)2?:?2 =2}, ¥ Bb; 3.1)
=1 7=1+1
We now re-write (3.1) in the form
= el N
Z Z (ﬁ ﬁ] = Zﬁq' (_3...)
=1 7=1+1 =1

Since the squared terms cannot be negative. all the B, must be zero if we do not know of the
existence of imaginary numbers, and sothe & = @z = ... = @n = ain (2.5). We now substitute
into (2.1) and find that

— n(a+b) = na=nm,
and thus

m= —(a+b).

which in (1.1) means that ¢ = 0. In the case of n = 3. the foregoing is particularly plausible since
(2.5) reduces to

a%+a%+a§: ayay + ayaz + aQz.

In considering
aqapas = — (a+b)* = — 3ab(a+d)



it is clear that a and b cannot both be integers.
4. Complex Roots
Given Fermat's strong interest in the theory of equations and the availability of the books by

Bombelli and Cardano on algebra, it is conceivable that he might have taken the above argument
further; (see Section 6). When n = 3, Equations (2. 1) and (2.2) become in turn

~3(a+bd) =3a+ B+ 5, 41
and
3(a+b)? = 3e* + 2a(B; + B)) + BB, (4.2)

in which a is any root and the subscripts refer to the other two roots. The product of the three roots
is given by

— 3ab(a+b) = &® + o*(B; + B,) + aB.B; 4.3)

On eliminating the term in a® we get

o® — a(BB,+ 3(a+b)?) — 6abla+b) =0 (4.4)
which has the form
2 +pr+qg=0 (4.5)
where
p= — (BB, +3(a+ b)) (4.6)
and
q= —60b(0+ b) (47)

Cardano's solution for such a cubic shows that if 27¢% + 4p® < 0, then the roots rmust always be
real (Hollingdale, 1989). Now in the Fermat case

27q* = 27 x 36a2b*(a+ b)’

and

ap® = — 4(BB, + 3(a+b)?)°,
so that if

27¢* + 4p° > 0,
then

927 x 90262 (a + b))% > (BB, + 3(a+ b)?)>. (4.8)

If the Bs are zero, then 9a?b”> > (a+ b)* which cannot be true. Hence (27¢% + 4p* ) must be
negative and all roots are real. which is consistent with the above results.

If B, and f3, are a conjugate pair. then the product is the sum of squares and positive, so that the right
hand side of (4.8) increases; hence 274% + 4p° < 0. so that all the roots must be real. When the
roots are real, they must all be equal as demonstrated in Section 3, and so a, b, ¢ cannot all be
integers From (2.1 the roots all equal — (a+ b). As noted above this implies that



—3abla+b) = — (a+b)°
so that
a? 4+ b2 = ab

and a and b cannot both be non-zero integers.

Cardano published his stately book on algebra, .4rs magna, in 1545. Tartaglia's methods for solving
cubics were in this book and were the source of a dispute from which emerged some interesting
documents. Among these were the Quaesifi of Tartaglia in 1546 and the Cartelli of Ferran in
1547-48, from which the whole history of the spectacular discovery concerning the cubic equation
z3 + pz + g = 0 became public knowledge (Struik, 1965).

The solution is now known as the Cardano solution and has the form

z= ((8°/2T + P/ 8)F + q/2)' — (P*/27 + ¢/ 4)7 — q/2)'?,

as utilized in this paper. We observe that this solutioix introduced quantities of the form
(a+ b%)] /3 which are different from the Euclidean (a + b%)’ .

5. General Case

Finally, for the general case, n > 3, we equate the coefficients of m™ 2 and m™ 3in P(m) to the
products of the roots, so that with a any root and 8 # 0,

lin.(n—l)(a—}- b)? = lin(n—-])az-k(n—l)Aa—}-B, (3.1
and
—n(n—1)(n—2)(a+b)*/6=n(n-1)(n-2)a’/6
+ L(n-1)(n—2)Ad’ + (n—2)Ba+C. (5.2)
where
n-1
A: Zlﬁl,
:2 n—1 n—1
=1 y=w+1 =1

n-3 n-2 n-1

=1 y=1+1 k=7+]
On multiplying (5.1) by La(n — 2) and eliminating the terms in a? as before to get the Cardano
form of the equation we {ind

p= — (3(a+b)? +6(n-2)B/n(n-1)(n-2)) (5.3)
d
v g= - (2(a+ b)?® +12C/n(n—1)(n— 2)). (5.4)



I/r; order to determine the sign of (27¢% + 4p*) more simply, we now find the relationship among
, B, C.

In the same manner as Equation (2.5) was obtained we have

Z E S aam = ((n-2)/6)y.02(La,).

=1 g=3141 k=341 =1 3#1

Substitution of @; = a + B, @, = a + B,, ..., and the use of Equation (3.1) yields

nC = BA
and
n-2 n-1
Zﬁ’ +2 ¥ BB,
=1 y=141

On using (3.1) again we obtam

B=(n—1)A*/2n
and
C=(n—1)A%/2n%

Replacing B and C in terms of A in Equations (5.3) and (5.4) we find that

p= —(3(a+b)*+3(4/n)%),
and
. g= —(2(a+b)*+(6/(n—2))(4/n)").
274* + 4p® = 4x 27(9/(n—2)* - 1)(A/n)® +
27 x 4(a + b) (A/n) ((6(a+ b)(A/n)/(n—2)) — 3(a+ b) — 3(A/n) I
or
97 x 4(a+ b)2(A/n)*( - 3(a+ b— A/n)’ — 6(n—3)(a+b)(A/n)/(n-2)).

The second term is negative no matter what the parity of A. The first term 1s less than the second
term when ro = 4. and the first term is zero when n = 5 and negative for n > 5. This means that
with this line of argument the roots will all be real and hence equal, so that we have a contradiction
if @ and b are assumed to be integers. This would mean that Fermat had proved his theorem.

The consistency of the foregoing can be assessed as follows. From Cardano's equation for g € Z:

a=qg+1
and

b=iq— 1
so that

ab=q*+1
and

a+ b= 2q

7



n 3 [ 4

Lasttermof P(m) | 3ab(a + b) 2ab(2(a + b)> - ab)

q v3 (6¢° —1)'/*

a™ + b" 2¢° - 6q 2¢* —124% + 2
—2v3(3-3) | = (12¢* — 2) — 12¢” + 2 |

Geronimo Cardano (1501-1576) and Rafael Bombelli (1526-1573) had started to develop what we

would now call imaginary numbers and so Fermat (1601-1665) may have been conceptually ready
for them.

6. Discussion

In order to accept that Fermat might well have reasoned as we have speculated above, one needs to
understand the 'mathematical climate’ of Fermat's times. According to Struik (1965), Cardano's .4rs
magna contained another brilliant discovery, namely negative numbers which Cardano called
"fictitious”. He was, however, unable to do anything with the so-called "irreducible case” of the
cubic equation in which there are three real solutions which appear as the sum or difference of what
we now call imaginary numbers.

This difficulty was solved by the last of the great sixteenth century Bolognese mathematicians,
Raffael Bombelli, whose Algebra appeared in 1572. In this book, and in a geometry wnitten about
1550 which remained in manuscript, he introduced a consistent theory of imaginary complex
numbers. He wrote 3i as v(0 — 9) (literally: R[0 m, 9], R for radix, m for meno). This allowed
Bombelli to solve the irreducible case by showing, for instance, that

(52 + (0 — 2200)8)/3 = 4.4 (0 - 1)}

Bombelli's book was widely read; Leibniz selected it for the study of cubic equations, and Euler
quotes Bombelli in his own .4/gebra in the chapter on biquadratic equations.

It is a curious fact that the first introduction of imaginary numbers occurred in the theory of cubic
equations, in the case where it was clear that real solutions exist though in an unrecognisable form,
and not in the theory of quadratic equations, where our present textbooks introduce them. Perhaps
it was the inherent challenge at the end of Summa de arithmetica (1494) by Luca Pacioli who
asserted that the solution of the equations

B +mr—n=0andz? —mzr+n=20

was as impossible at the present state of science as the quadrature of the circle (Struik, 1965: 1 10).
Clearly the study of cubic polynomials was important at the time. though Bover notes that by the
time of Leibniz (1646-1716), complex numbers were almost forgotten: he factored z* + a*into
complex parts and he showed that v6 = v(1+ v —3) + v(1 — v = 3), though he did not wnte
the square roots of complex numbers 1n standard complex form. "The ambivalent status of complex
numbers is well illustrated by the remark of Leibnitz ... that imaginary numbers are a sort of
amphibian, halfway between existence and nonexistence” (Bover, 1968: 444).  Complex numbers
started 1o lose their 'supernatural’ character. though full acceptance came only in the nineteenth



century. We also observe that the notation of this paper is not chronological as we have merely tried
to toy with a line of thinking. Notation as a tool of mathematical thought was to come later (Cajori,

1928), though the manipulation of polynomials in the way we have suggested had reached textbooks
by the seventeenth century (cf. Cohen and Shannon, 1981).

By way of conclusion we observe that Fermat's method of infinite descent is often seen as the
forerunner of the principle of mathematical induction. To what extent this is true, or whether he
really used 'ascent’ or 'descent’ are debatable issues (cf. Hunter, 1964; van der Poorten; 1996,
Stillwell 1998). When one compares (2.5) and (3.1) it is tempting to keep decreasing the upper
limits of summation with some form of Fermat's method of infinite descent (Franklin and Daoud,
1988). In any case we are concerned here primarily with the validity of the logic. As Singh and
Ribet (1997) said: "Either Fermat was mistaken, and his proof, if it existed, was flawed, or a simple
and cunning proof awaits discovery”. Or was Petsinis (1997) correct with his surmise that
"sometimes | envisage Fermat peeping from behind his theorem, smiling mischievously in the
knowledge that he has perpetrated a hoax that will tease and torment countless minds"?
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