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1. Introduction

Various authors, for example, de Carli (1970), Shannon (1979) and Wyler (1965), have
considered aspects of the structure of second-order recurrences in the context of ring
theory. It is the purpose of this paper to consider Fibonacci numbers within modular rings
using an approach modelled on that of Carlitz (1955). We also consider the merits of
comparing linear recursive sequences of the same order in terms of their structure at given
values of the general term.

We represent integers within the modular ring Z, by 4R, + i, where
i€ {0,1,2,3}represents the class number (Leyendekkers ef al, 1997). (Strictly
speaking, 1 = 1, = 1 (mod4) and so on, but we have opted for brevity where there is no
danger of confusion.)

2. The Class of Fibonacci Numbers
The class of Fibonacci numbers, F,, € Z, is easily established from

m=q+ bw (2.1)

withw=10,1,2,3,..., and g from Table 1.

Class | g
0 0
PT 1,20rb
2 3
E 4
Table 1

For example, when m = 37, F,, € 1 with ¢ = 1. We might expect from Table 1 that T
will hold the largest number of Fibonacci numbers, and this is confirmed in Table 2 in



which we observe a period of 6 between successive F,,, € 0. Of these, 3 are in 1 and 1
cachin 0,2 and 3.

Row |0 |1 |2 |3

0 0O 11 12 1|3

1 4 |5 |6 |7

2 8§ |9 1011
3 12 113 |14 | 15
4 16 | 17 |18 | 19
5 20121 | 22|23
6

7

8

Table 2

This periodicity tells us succinctly in which row a Fibonacci number occurs. The row,
R(F,,), isitself curiously a Fibonacci number given by

i
R(F,) = ZIF —65+3¢ (2.2)

J:

The largest value of m in each block of 6 is given by my,,, = 10+ 6s,
s=0,1,2, 3, ...; the smallest value of m in each block is given by M,z = My, — 9,
and £ = 2s+ 1 for the six values of m in the block. Some examples are contained in
Table 3.

|lm |s |t Class F,,
5 o1 |1
7 /0|1 |1
9 |01 |2
13(1(3 |1
14113 |1
16113 |3
17125 |1
181215 |0
20215 |1
231317 |1
28137 |3
42 16|13 |0
Table 3

The period of 6 is a particular case of Brent (1994), that if one of the initial values for
{F,,} € Z4 is odd, then the sequence has period 6 and is a maximal sequence. This result
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has more recently been extended by Morgan (1998) who has completely determined the
distribution of any maximal sequence which satisfies the Fibonacci recurrence relation
(mod 2"). By way of concluding this section we observe that if [ F,,,| represents the class
in which F,,, occurs, then "

[Fﬁ‘n—l—r] — [Fﬁn] + [Fr} )

which follows from Table 2 and the Fibonacci recurrence relation.
3. F,, as a Sum of Squares

Numbers in classes 1 and 2 can be sums of squares (Levendekkers ef @/, 1997), and it is
interesting to analyse which F,,, equal (d2 + €? ),d, e € Z. As can be seen from Table 4,
when m is odd for F,, in these two classes, one set of d, e values equals a Fibonacci set.
These values of d and e in the set are simply obtained from Hoggatt (1969):

Fro = (Fimin)’ + (Fygn))’- 3.1

If F,,is a prime, then there will be only one d, e pair. Non-primes will have the same
number of d, e pairs as there are factors, or a single d, e pair will have common factors
(Leyendekkers et a/, 1998). However, only one of the d, e pairs will satisfy Equation
(3.1).

} m | Fi, Factors d e

1 |1 — -

5 |5 1 2

7 113 3 2

11 | 89 5 8

13 | 233 13 8

17 | 1597 21 34

19 | 4181 37,113 55 34
41 50

23 | 28657 89 144

25 | 75025 25,3001 233 | 144
73 264

29 | 514229 377 | 610

31 | 1346269 987 | 610

35 | 9227465 | 5,13,141961 | 1597 | 2584
3037 | 64
1109 | 2828

37 | 24157817 | 73,149,2221 | 4181 | 2584
4909 | 244
3859 | 3044

Table 4(a): Odd m € 1
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m | F, Factors d e

2 |1 — —

8 |21 3,7 — -

14 | 377 13,29 19 4
11 16

20 | 6765 3,5,451 — —

26 | 121393 303 | 172

32 | 2178309 | 3,726103 — —
38 | 39088169 | 37,113,9349 | 4795 | 4012
5837 | 2240
4613 | 4220

Table 4(b): Even m € 1

Table 1 shows that m will be even for F,, ¢ {0,3}and when g = 2 for F,, ¢ 1. Hence
Equation (3.1) will not apply to these cases, as can be seen in Table 4(b).

m | F, d TG
3 |2 — | =
9 |34 5 |
15| 610 21 13

21 | 10946 89 55
27 | 196418 377 | 233
33 | 3524578 | 1597 | 987
39 | 63245986 | 6765 | 4181

Table 5: Equation (3.1); Class 2

Furthermore, the numbers in Class 3 can never be sums of squares (Leyendekkers et al,
1997), while numbers in Class 0 can be sums of squares (although not necessarily so); for
example, 32 € 0 and 32 = 42 + 42. Since m is always even for Class 0 the d and e
values will not be Fibonacci numbers when the number itself is. For Class 1, g = 2, the
series m = 14 4+ 12k, k= 0,1,2, 3, ..., has a sum of squares for F,,. However, there
are no sums of squares for the series m = 8 + 12k. We further observe that Tables 6,7
and 8 in the next section contain examples of a less well-known theorem of Fermat to the
effect that a prime p=a? + b%,a,b, € Z iff p=2 orp=1(mod4), thatis pc 1
(Dilcher, 1998).

4. Some Other Second Order Recurrences

The best known of other second order sequences are the Lucas { L,,} and the Pell { P, }
which are defined respecitvely by the following recurrence relations and initial terms:

Ln:Ln—1+Ln—27 HEQ,
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with Ty = 2, Iy = 1 and
Pn:2pnfl+Pn~21 ‘1’122,
with Py =0, P, =1.

The first few terms and their corresponding classes are set out in Table 6, where we
observe that P, unlike L,,, also satisfies Equation (3.1).

7 0112 3|4 |5 |6 |7 8 9 10

L, 211347 11|18 29 |47 |76 | 123

Closs|2]1]3]0|3 |3 |2 |1 |3 |0 |3

P, 0125122970169 | 408 | 985 | 2378

(Class [0|1|2|1/0 |1 |2 |1 |0 |1 |2
Table 6

It can be seen that { L,,} has a period of 6 like the Fibonacci numbers, whereas { P,,} has a
period of 4, and that L, ¢ {0,1,2,3} like F,,, but P, ¢ {3}. The discriminant, 3, of
the associated auxiliary equation is 5 in the case of the Fibonacci and Lucas sequences and
it is 8 in the case of the Pell sequence.

We now consider some other second order linear recursive sequences with varying
discriminants. In the notation of Horadam (1965) we define {W,,} = {W,(a,b; p, q)}
by the recurrence relation

Wn:pW_l—qW_g, TL22,

with initial conditions Wy — a, W; — 6. In turn let

{Sn} = {Wn(oal;lv A2)}7 {Tn} = {Wn(071;1; _3)}7
{Un}E{Wn(()?l:l: _4)}7 {VR}E{Wn(O-;l,ls_'?)}

We notice immeditately the basic facts which are set out in Tables 7 and 8.

m | Sy, | Class | T,, | Class | U, Class | V,, Class
1 |1 1 1 1 il il 1 1
2 |1 1 1 1 1 i) 1 1
3 |3 3 4 0 5 1 8 0
4 |5 1 7 3 9 1 15 3
5 |11 |3 19 |3 29 1 71 3
6 |21 |1 40 |0 65 1 176 |0
7T 143 |3 97 |1 181 |1 673 |1
8 |8 |1 217 | 1 441 |1 1905 | 1
9 171 |3 508 | 0 1165 | 1 6616 | 0
Table 7
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W, | Classes | Period | 0
S, |1,3 2 9
T, 10,1,3 |3 13
Uu, | 1 1 17
'V, |0,1,3 |6 29
Table 8

Further analysis reveals that the sums of squares for {7T,,} in Table 9: does the period 6
have a role to play in this?

n | T, Sumsof Squares
6 |40 2° + 6’
7 |97 4* + 9°

13 | 14209 | 1032 + 602,952 + 7922
14 | 32689 | 172 + 1802%,145% + 108?

Table 9

The foregoing suggests that we may be able to learn more about the structure of some of
the sequences by comparing them at particular points of these ordered sets. For instance,

W5:CI,2+30.+1

yields the values in Table 10.

[~]
[ot

2 |3 |4 |7
Wy |5 |11 (1929 71
— F5 55 T5 U5 V5

Table 10

Similarly, for
Ws = (2a +1)(2d + 4a + 1)

we get the values in Table 11.

a 1 12 |3 4 7
Wg | 21 | 86 | 217 | 441 | 1905
= [ Fs |55 |Ts |(Us | Vs

Table 11
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We are, in effect, considering 'm sequences’ at each value of m in W,,,. Each m sequence
has distinct characteristics. For example, for . = 6 and m = 8 all the W, = W,,,(?)
values are composite. This can be seen with the expansion of

We(®) =1+ +60+1)/16 (4.1)

B = (2ry + 1)(27% + 47 + 1) 4.2)
withdc 1, 0=4r; +1,.

This is to be compared with the equation for a composite N (Leyendekkers ef al, 1998):
N=(2t+1)(2(t+s —1) 4.3)

with £,5s—=0,1,2,3, so that {=r; and s = (r? + 7+ 1). On the other hand, the
sequence { Wy (D)} is prime-rich in a sense. It is given by

Ws(0) = ri + 3r + 1. 4.4)
When the right-most digit of Wx(?) is 5, r{ =14 by, v=20,1,2,3,.... When
Equations (4.3) and (4.4) arec compatible, Wy (0) will be composite. This occurs in regular
doublet sequences for rows following the equation

= A+ fu (4.5)

where f is a prime factor of Wy (0) and v = 0,1,2, 3, ... (Table 12).

f 15 11 11912931 41 |59 61 |71 | 79
All 1311322113324 16 |61 28
— |17 122 |33 |17 |46 | 32 | 42 | 78 | 48

Table 12

Note that, apart from f = 5, the right-most digit of f is always + 1(mod10). A similar
form to Equation (4.5) applies for m = 7 when

W'((a) = ’!‘? + 6?‘% -+ 5’!’1 + 1. (46)

However, A can have up to three values, and the right-most digit of f is 1, 4+ 3 (mod
10). Form =19

Wo(d) = (1 + 1) (3 + 977 + 6r; + 1) (4.7)

so that there are no primes in this sequence.
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In general, since
Wn(0) = (a7 — y™) /22

where z,y are the zeros of the characteristic polynomial, with = — y = 02 ,and
x4 y=1,
Win(®) = [(22 — g2 (m ) (2207 4 gz o) (22 4 y7)
— 2P (™I — ) /(2 — ) (4.8)

with . — 2n > 0. Thus it can be readily established if there are any primes in the
sequence. For example, when m — 2n = %(m —n)(m=6,n=2;, m=9,n=3;
m=15,n=5; ...),orwhen%(m —2n)=n{m=8,n=2; m=16,n=4;

m = 32, n=8;...), there will be a common factor. W,,(9)is a prime only when m is a
prime.

Neither of the integers f and g is a Fibonacci number for the sequence m — 14 + 12k,

Wm:f2+92

with f odd and g even. However, with & > 0, F%(m-—Q) <g< F%m < f< F%(m+2).
Moreover, g = 4rg € 0 and f = 475 + 3 € 3.

5. Conclusion

Similar modular-ring analyses may be applied to generalized Lucas sequences
{G,} = {G,(2,1;1, — r)} which satisfy the recurrence relation

Gn=Gp1+ rGny, n>2. (5.1)

Some cases are illustrated in Table 13, which includes the ordinary Lucas sequence
{L,} = {Ga(2,1;1, — 1)}, 0=4r + 1.

9 ||n |12 |3 |4 |5 6 7 8

5 (1L, |13 |4 |7 |11 |18 |29 47

9 (24,16 |7 |17 31 |65 | 127 | 257
133 B,|{1]|7 103161 |154 337 |799
1714 /C, |19 |13 |49 | 101 | 297 | 701 | 1889
2115 D, |1 11|16 |71 | 151 | 506 | 1261 | 3791

Table 13

These generalized Lucas sequences are related to the corresponding generalized Fibonacci
sequences { W,,(0,1;1, — r)}by
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Gn - Wn + ern—l » T8 2> 13 (5'2)

which can be readily proved by mathematical induction with the use of Equation (5.1).
Equation (5.2) is a generalization of Hoggait (1969)

L,=F,+2F, ;.
The modular results then follow since the general term for W, is given by (Barakat,1964):

W, :[;ffj ( ”—J) v, (5.3)

o’

A similar analysis can be carried out for the modular ring Zg within which the integers can
be represented by (67, + (i — 3)) where i€ {1,2,3,4,5,6} represents the class
number (Leyendekkers et a/, 1997). W,, increases rapidly as d becomes large. Of interest
too is the relation of these sequences to one another. For instance, how often do they
intersect. There are many unanswered facets of the question for generalized Fibonacci and
Lucas sequences as in Stein (1962). For example, from Table 13 we can see that

#(A,N B,) > 3.
Another related topic for further research is the study of order relations on square-free
rings using D'Antona's counting function (1998). So too is the frequency of a sum of
squares for its members. Of course, one can also try to extend the ideas to third order

recurrences and then to arbitrary order recurrences along the lines of Shannon
(1972,1974).

References

Barakat, Richard. 1964. The matrix operator eXand the Lucas polynomials. Journal of
Mathematics and Physics. 43: 332-335.

Brent, R P. 1994. On the periods of generalized Fibonacci recurrences. Mathematics of
Computation. 63: 207.

Carlitz, L. 1955. Some class number relations. Mathematische Zeitschrift. 62: 167-170.
D'Antona Ottavio, M. 1998. The would-be method of targeted rings, in Bruce Sagan &
Richard P Stanley (eds). Mathematical Essays in Honor of Gian-Carlo Rota. Boston:
Birkhauser, pp.157-172.

DeCarli, D J. 1970. A generalized Fibonacci sequence over an arbitrary ring. 7he
Fibonacci Quarterly. 8.2: 182-184.

173



Dilcher, Karl. 1998. Nested squares and evaluations of integer products. 8th International
Conference on Fibonacci Numbers and Their Applications, Rochester, USA, 22-26 June.

Hoggatt, V E. Jr. 1969. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin.

Horadam, A. F. 1965. Generating functions for powers of a certain generalized sequence
of numbers. Duke Mathematical Journal. 32.3: 437-446.

Leyendekkers, J V, Rybak, J M & Shannon, A G. 1997. Analysis of Diophantine
properties using modular rings with four and six classes. Notes on Number Theory &
Discrete Mathematics. 3.2: 61-74.

Leyendekkers, J V, Rybak, J M & Shannon, A G. 1998. The characteristics of primes and
other integers within the modular ring Z; and in class 1. Notes on Number Theory &
Discrete Mathematics. 4.1: 1-17.

Morgan, Mark D. 1998. The distribution of second order lincar recurrence sequences mod
2™, Acta Arithmetica. 83.2: 181-195.

Shannon, A.G. 1972. Iterative formulas associated with third order recurrence relations.
S.1.AM. Journal of Applied Mathematics. 23.3: 364-368.

Shannon, A.G. 1974. Some properties of a fundamental lincar recursive sequence of
arbitrary order. The Fibonacci Quarterly. 12.4: 327-335.

Stein, S.K. 1962. The intersection of Fibonacci sequences. The Michigan Mathematics
Journal. 9: 399-402.

Wyler, O. 1965. On second order recurrences. dmerican Mathematical Monthly. 72.5:
500-506.

AMS Classification Numbers: 11R29, 11B39.

174



	NNTDM-4-4-165
	NNTDM-4-4-166
	NNTDM-4-4-167
	NNTDM-4-4-168
	NNTDM-4-4-169
	NNTDM-4-4-170
	NNTDM-4-4-171
	NNTDM-4-4-172
	NNTDM-4-4-173
	NNTDM-4-4-174

