DIOPHANTINE QUADRUPLES AND QUINTUPLES MODULO 4

Andrej Dujella

Abstract: A Diophantine *m*-tuple with the property D(n) is a set $\{a_1, a_2, \ldots a_m\}$ of positive integers such that for $1 \leq i < j \leq m$, the number $a_i a_j + n$ is a perfect square. In the present paper we give necessary conditions that the elements a_i of a set $\{a_1, a_2, a_3, a_4, a_5\}$ must satisfy modulo 4 in order to be a Diophantine quintuple.

Let n be an integer. A set of positive integers $\{a_1, a_2, \ldots, a_m\}$ is called a Diophantine m-tuple with the property D(n), or P_n -set of size m, if $a_i a_j + n$ is a perfect square for all $1 \leq i < j \leq m$. A P_n -set X will be termed extendable if, for some integer $d, d \notin X$, the set $X \cup \{d\}$ is a P_n -set.

The problem of extending P_n -sets is an old one, dating from the time of Diophantus (see [4, 5]). The first P_1 -set of size 4 was found by Fermat, and it was $\{1,3,8,120\}$. The most famous result on P_n -sets is due to Baker and Davenport [2], who proved that if $\{1,3,8,d\}$ is a P_1 -set, then d has to be 120.

In 1985, Brown [3], Gupta and Singh [8] and Mohanty and Ramasamy [9] proved independently that if $n \equiv 2 \pmod{4}$, then there does not exist a P_n -set of size 4. In 1993, the author proved that if $n \not\equiv 2 \pmod{4}$ and $n \not\in \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then there exists at least one P_n -set of size 4 (see [6]). P_n -sets of size 5 were studied in [1, 7, 10].

The purpose of the present paper is to characterize congruence types modulo 4 of Diophantine quadruples and quintuples. We will say that a set $X = \{a_1, \ldots, a_m\}$ has a congruence type $[b_1, \ldots, b_m]$, where $b_i \in \{0, 1, 2, 3\}$, if $a_i \equiv b_i \pmod{4}$ for $i = 1, \ldots, m$.

⁰ Mathematics Subject Classification (1991): 11A07, 11B75, 11D79 Keywords and Phrases: Diophantine m-tuple, P_n-set, congruences

Our starting point is the following result of Mootha and Berzsenyi [11, Theorems 1, 2 and 3].

Theorem 1 (a) If all of the elements of a P_n -set of size $m \geq 3$ are odd, then they are congruent to one another, modulo 4.

- (b) If only one of the elements of P_n -set of size $m \geq 3$ is odd, then all of the others are congruent to 0, modulo 4.
 - (c) P_n -sets of the congruence type [1,2,3] are not extendable.

Proof: (a) Let $\{a,b,c\}$ be a P_n -set. Assume that a,b,c are odd and $a \equiv b \equiv c-2 \pmod{4}$. Since square of an integer is congruent to 0 or 1 modulo 4, $ab+n=\square$ implies $n\equiv 0,3\pmod{4}$, and $ac+n=\square$ implies $n\equiv 1,2\pmod{4}$. Contradiction.

- (b) Assume that $\{a,b,c\}$ is a P_n -set, a is odd, b is even and $c \equiv 2 \pmod{4}$. Then $ac + n = \square$ implies $n \equiv 2, 3 \pmod{4}$, and $bc + n = \square$ implies $n \equiv 0, 1 \pmod{4}$. Contradiction.
- (c) Assume that $\{a, b, c, d\}$ is a P_n -set, $a \equiv 1 \pmod{4}$, $b \equiv 2 \pmod{4}$ and $c \equiv 3 \pmod{4}$. Applying (a) on the set $\{a, c, d\}$ we see that d cannot be odd, and applying (b) on the set $\{a, b, d\}$ we see that d cannot be even.

Theorem 2 A P_n -set of size 4 has one of the following congruence types:

$$[0,0,0,0],\quad [0,0,0,2],\quad [0,0,2,2],\quad [0,2,2,2],\quad [2,2,2,2],$$

$$[0,0,0,1],\quad [0,0,0,3],\quad [0,0,1,1],\quad [0,0,1,3],\quad [0,0,3,3],$$

$$[0,1,1,1],\quad [0,3,3,3],\quad [2,1,1,1],\quad [2,3,3,3],\quad [1,1,1,1],\quad [3,3,3,3],$$
 and all of these congruence types are indeed possible.

Proof: The first part of the theorem follows directly from Theorem 1, and the second part will follow from Theorem 4 below.

Theorem 3 A P_n -set of size 5 has one of the following congruence types:

$$[0,0,0,0,0], \quad [0,0,0,0,2], \quad [0,0,0,2,2], \quad [0,0,2,2,2], \quad [0,2,2,2,2], \\ [2,2,2,2,2], \quad [0,0,0,0,1], \quad [0,0,0,0,3], \quad [0,0,0,1,1], \quad [0,0,0,1,3], \\ [0,0,0,3,3], \quad [0,0,1,1,1], \quad [0,0,3,3,3], \quad [0,1,1,1,1], \quad [2,1,1,1,1], \\ [0,3,3,3,3], \quad [2,3,3,3,3], \quad [1,1,1,1,1], \quad [3,3,3,3,3].$$

Proof: The theorem is a direct consequence of Theorem 2.

Theorem 4 For all congruence types from Theorem 3, apart from maybe [1,1,1,1,1] and [3,3,3,3,3], there exists a nonzero integer n and a P_n -set of size 5 with that congruence type.

Proof: The theorem follows from the following table:

n	P_n -set of size 5	Congruence type
-1196	$\{28, 44, 60, 84, 180\}$	[0,0,0,0,0]
-455	$\{8,72,102,148,492\}$	[0,0,0,0,2]
1600	$\{8,42,250,768,22272\}$	[0,0,0,2,2]
1024	$\{2, 66, 210, 640, 36480\}$	[0,0,2,2,2]
14400	$\{26, 200, 266, 506, 9450\}$	[0, 2, 2, 2, 2]
-299	$\{14, 22, 30, 42, 90\}$	[2, 2, 2, 2, 2]
1024	$\{4, 33, 2660, 5520, 245760\}$	[0,0,0,0,1]
9216	$\{12, 99, 7980, 16560, 737280\}$	[0,0,0,0,3]
400	$\{4, 21, 125, 384, 11136\}$	[0,0,0,1,1]
-255	$\{8, 32, 77, 203, 528\}$	[0,0,0,1,3]
-476	$\{20, 31, 75, 96, 192\}$	[0,0,0,3,3]
400	$\{4,21,69,125,384\}$	[0,0,1,1,1]
400	$\{7, 12, 63, 128, 375\}$	[0,0,3,3,3]
3600	$\{13,100,133,253,4725\}$	[0, 1, 1, 1, 1]
-3185325	$\{1113,2958,3417,3993,4725\}$	[2, 1, 1, 1, 1]
1296	$\{11, 35, 128, 243, 315\}$	[0, 3, 3, 3, 3]
-353925	$\{371, 986, 1139, 1331, 1575\}$	[2, 3, 3, 3, 3]

Corollary 1 For all congruence types from Theorem 3, there exists an integer n and a P_n -set of size 5 with that congruence type.

Proof: The statement follows directly from Theorem 4, using the fact that $\{1,9,25,49,81\}$ and $\{3,27,75,147,243\}$ are P_0 -sets.

References

- [1] J. ARKIN, V. E. HOGGATT, E. G. STRAUSS, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17(1979), 333-339.
- [2] A. BAKER, H. DAVENPORT, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2) **20**(1969), 129-137.
- [3] E. Brown, Sets in which xy + k is always a square, Math. Comp. 45(1985), 613–620.
- [4] L. E. DICKSON, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992, pp. 513-520.
- [5] DIOPHANTUS OF ALEXANDRIA, Arithmetics and the Book of Polygonal Numbers, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
- [6] A. DUJELLA, Generalization of a problem of Diophantus, Acta Arith. 65(1993), 15-27.
- [7] A. DUJELLA, On Diophantine quintuples, Acta Arith. 81(1997), 69-79.
- [8] H. GUPTA, K. SINGH, On k-triad sequences, Internat. J. Math. Math. Sci. 5(1985), 799-804.
- [9] S. P. MOHANTY, A. M. S. RAMASAMY, On $P_{r,k}$ sequences, Fibonacci Quart. **23**(1985), 36-44.
- [10] V. K. MOOTHA, On the set of numbers {14, 22, 30, 42, 90}, Acta Arith. 71(1995), 259-263.
- [11] V. K. MOOTHA, G. BERZSENYI, Characterizations and extendibility of P_t -sets, Fibonacci Quart. 27(1989), 287–288.

Andrej Dujella Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, CROATIA

E-mail: duje@math.hr