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Abstract

The Chebyshev polynomials of the first kind, 7., (x) = cos(ncos ' x) (n integer,

x| <1), satisfy the

second-order recurrence relation

&

mlzszn,van; 7—;):1 T:x.
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It is shown that they also satisfy the first-order recurrence relation

T

n+l

=xT +r(1-x)A-T2)), T, =1,
where the function r is defined by
r(p(x)*) = sle( p(x)) p(x)
for polynomial p(x) and sle(p(x)) denotes the sign of the leading coefficient of p(x).
Associated Chebyshev polynomials, satisfying
X,,=2ax)X,,-X,, X

o =%,, X, polynomial,

n+2

for polynomial a(x), are then defined and the corresponding first-order relation given. An

example of non-polynomial a(x) leading to the functions ¥, (x) = sin(nsin "' x) is also mentioned

together with a more general first-order recurrence relation for the non-polynomial case.



1. Chebyshev polynomials of the first kind
Consider the first-order recurrence relation
T2

n+l

-2xT.T

n+1+Tn2:1_x2> TO:l, (1)
motivated by the trigonometric expansion of 7, (x)=cos((n+1)cos™ x). The second-order
relations associated with (1) can be determined as follows.

Equation (1) implies that

(T

i —XT)° =(1=x*)1-T}) (2)
and, by symmetry,
(I, =xT,,.)" == %" )1-T.,) . 3)

Incrementing the subscripts of (2) and comparing this with (3) gives

(T =xT,0) =T, -xT,.))* = T,,-xT,, =+, -xT,,)
so that
T,,=2xT,, —-T, or “4)
Ty =1, ®)

Also, substitution of 7, =1 into (1) gives

I'-2xT,+x*=0 = (I,-x)*=0 = T =x.
Equation (4) with the given initial conditions produces the Chebyshev polynomials of the first
kind (1, x, 2x* -1, 4x’ —3x, ...), while equation (5) gives the trivial sequence 1, x, 1, x, ... .
(This spurious solution was introduced by the squaring process involved in obtaining equation (1)
from the trigonometric expansion of 7, ,,(x).)

In order to solve the quadratic (1) for 7,,, in terms of 7, the usual quadratic formula is not

appropriate if polynomial solutions are required. This is because, for a polynomial p(x),

Vp(x)* =|p(x)| is not in general a polynomial. To avoid this difficulty the following function is

introduced.

For a polynomial p(x), let



r(p(x)*) = sle(p(x)) p(x)
where slc(p(x)) indicates the sign of the leading coefficient of p(x). We note that r(p(x)*) is
then a polynomial with positive leading coefficient and that r(c)reduces to the usual square root
function for constant ¢ >0 (r(c) = r((+vc)?) = e).
Thus, from (2),
T =xT, £r((1-x*)(1-T,))
is an alternative first-order form which also leads to equations (4) and (5) but which maintains the
polynomial character of the solutions. (The definition of the function r applies here since (2)
implies that if 7, and 7,,, are polynomials then (1-x*)(1-77)= p(x)*> for some polynomial
p(x).)
To determine when solutions to equations (4) or (5) will arise, consider the case of equation (6)
with positive sign. Suppose deg(7),) =g and 7, has positive leading coefficient. The RHS of (6)
gives
deg(7,,,) =max(q+1,(2g+2)/2)=qg+1.
The function r maintains the polynomial nature of the solutions and, in this case, the degree of the

polynomial increases at each iteration. Thus, the Chebyshev polynomials, given by the usual

second-order relation (4), are also given by the first order relation
T, =xT, +r((1-x>)A-T7)).
Example 1
Equation (7) indicates an alternative, first-order, process for determining the Chebyshev
polynomials. With 7, =1, equation (7) gives

I =x+1(0)=x,
T,=x*+r((1-x*)*)=2x"-1,....

There are in fact (infinitely many) other non-polynomial functions which satisfy (1), such as the

usual quadratic formula solution

n

T, =xT, £(1-x)(1-T7),

(6)

()



but these are merely point-wise combinations of solutions to (4) and (5) and are not polynomial in

general. For example, 7,,, = x7T, + \/(1 —x*)(1-T}) with T, =1 gives

n+l
I, =x and

T, :x2+’1—x2‘:{2x2—1 [x|=1,

1 x| <1.
Continued iteration of this solution intermingles the basic polynomial solutions to (4) and (5) since

the sign of the last term of the recurrence relation does not always serve to increase the degree of

the polynomial over the whole range of x values.

2. Associated Chebyshev functions
The simple approach demonstrated in the foregoing is readily applied to a related recurrence

relation which determines polynomials associated with the Chebyshev polynomials (the main
difference being that restrictions on 7|, and 7, are relaxed). We generalize (1) by setting
X3+1

-2a(x)X, X, + X} =x}-b(x), X,=x,, 3

a1
where a(x) and b(x) are polynomials and x,is constant. Following the steps used to obtain
equations (2)-(5) gives
X, =2a(x)X,, ~X, or ©
X ..=X,,
Substitution of X, = x, into (8) leads to
X, =a(x)x, tr(a(x)*x; —b(x))

when a(x)*x; —b(x) is a perfect square. By choosing x, and A(x) suitably, a range of initial
conditions can be obtained. Exactly analogous to (6), polynomial solutions are given by

X, =a()X, £r(x} -b(x)-(1-a(x)"))X?), X,=x,. (10)
If slc(a(x)) <0 and solutions with increasing degree are required, then the choice of sign in (10)

may alternate (depending on the degree of b(x)).



Example 2

Consider the case where slc(a(x)) > 0 and polynomials of increasing degree are required.

When X, =x,=1 and b(x)=a(x)’ we have X, =a(x) which, with (9), indicates that
X, =T, (a(x)). Equation (10) gives an alternative, first-order, method of calculating these
polynomials by use of X, , = a(x)X, +r((1-a(x)*)(1-X})).

When X, =x, =1 and b(x) =0 we obtain X, =2a(x). It is well known that equation (9) with

these initial conditions gives the Chebyshev polynomials of the second kind, ie X, =U  (a(x)),
where U, (x) = ——I—TT 7., (x). Equation (10) thus also gives an alternative method of calculating
n+

these polynomials, X ,,, = a(x)X, +r(1—(1-a(x)*)X}).
Suitable choices of a(x) then give the shifted Chebyshev polynomials 7, (x)=7,(2x-1),
U.(x)=U,(2x-1), C,(x)=2T,(x/2) and S, (x)=U, (x/2) mentioned by Abramowitz and

Stegun [1]. The Morgan-Voyce and associated polynomials [2], which arise from a similar
second-order recurrence relation, may also be mentioned as special cases. Each of these

polynomials can thus also be calculated by first-order formulae.

3. Non-polynomial a(x)
Finally, it is interesting to note that first-order recurrence relations can be found for non-

polynomial functions such as V, = sin(nsin ' x) (» integer,

x| <1). V, satisfies

T}+V?=1  neven,
V,=(=D""?T  nodd.
It can be verified by substitution and use of the trigonometric properties that 7, satisfies the

n

associated Chebyshev recurrence relation (9) with a non-polynomial function a(x), i.e.

Vn+2:2N1_x2Vn+1_Vn’ V0:O> I/lzx'

e
re
=



An alternative, first-order form can be found by expansion of ¥, (x) = sin((n +1)sin ' x) and use
of cos(nsin ' x) = cos(ncos™ V1-x*)=T,(W1-x?), viz,,
V., ()=v1-x*V (x)+xT,(N1-x*), V,=0.

This suggests consideration of first-order relations of the form
X, =a()X, +xT, (a(x)), X, =x,, (11)
where a(x) is not necessarily polynomial. For this relation we have

X,.,-2a(0)X,, +X, =a(x)X,., +xT,, (a(x))
—2a(x)(@(x)X, +xT,,(a(x)))
+a(x)X, , +xT,_ (a(x))

= a(x)(X,,, —2a(x)X, + X, )

n+l

n+l

by use of the recurrence relation for 7

n+l *

Thus, X, (n>2) also satisfies the second-order

associated Chebyshev relation (9) whenever X, X, and X, do. Substituting X, X, and X,

1

found by use of (11), into equation (9) forces either x, =0 or a(x) = 1 in this case.

Conclusion
A range of well-known functions commonly described by second-order recurrence relations in fact
satisfy a generalized first-order relation, providing alternative methods for their calculation and

analysis.  Are other well-known recurrence relations, such as the Fibonacci relation

Fn+2:F

n+l

+F, (F, =0, F, =1), inherently second-order or do equivalent first-order relations

also exist?
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