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1. iIntroduction

The purpose of this note is to outiine some results for sums of pairs of squares
and cubes of integers, and then to pose a relevant question. The history of such
guestions goes back to Legendre (Dickson, 1965, 261) who established a
description of the natural numbers which are the sums of 3 squares, and to Euler
(Dickson, 1952, 230-231) who answered the case for 2 squares. More recently,
Ewell (1983) showed that an easy special case of the triple-product identity
implies Fermat's two-square theorem: any prime of the form 4%k + 1 can be
expressed as the sum of two squares.

2. Sums of Squares

Let n— 2% + o, =,y ¢ Z, then a well-known theorem in number theory (Burton,
1980) states that n — N2m, N ¢ Z, m is square-free and has no factors of the
form 4%k + 3. The value of &k may be zero or a positive integer. N may be equal to
unity. Letz — a + bi wherea,be Z,i° — — 1. Then

ZF—=(at b)), pcZ,, ‘\
=a?+ (F)a”'bi — (F)a? 2 — (B)a” i + ...
= [a? — (?)a? 2pt L4)(Jp A — +

[(P)a? b — (E)a? 0% + (F)a” *b" — ..]i.

Both series in the square brackets terminate when » > p. We then take the
complex conjugates, »zand 2727 and use induction to show that

p 2 { —212 2 07 1 — 1 - p —333 12
(az + b )p — !(};p S {5)(11) )b 4 ‘_:g 1 %(?)GP lb’ (;)C’,p %b‘) l (21)

For example, when p = 5.

- o 2 42 213 | 1.5\2
2P7P = (a® — 10a®b? + 5ab*)* + (5a*b — 10420° + b°)

=~ a'9 4 548 + 10a%h* + 10a*8° + 5a?b® + b'C
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As a numerical illustration, let o — 3 andb = 2 :

13 = N?m =12(4x 3+ 1) = 32427
From (2.2):

K

507% 1 1222 = (3% + 27)° =371293.

Since n may not be uniquely expressed as the sum of two squares, there may
sometimes be another pair of squares whose sum is equal to the pth power. For
instance,

)

145 = 17(4 x 36 + 1) = 8% + 9% = 12* + 1°.

Conversely, the pth root of some integers may be expressed as the sum of the
squares of integers from (2.1).

3. Sums of Cubes

Consider the Diophantine equation
¢ = d® + b (3.1

Wiles and Taylor (van der Poorten, 1996) have established Fermat's Last
Theorem. Here we consider (3.1) as a lead into the last section. Suppose

ce=a+b+m, meZ (3.2)
Then _ )
& =a®+ b+ 3abla + by + m® + 3m?(a+b) + 3(at b)’'m.
If (3.2) holds, then
m® + 3(a t+ bym? 1 3(e+ b)’m + 3abla+ b) = 0.

This is a cubic in m with roots «, 3, v, say. Then

~3at+b) =a+ B+,

and

3(a+b) = aBf+ Byt o
Thus ‘

(a+ B+ )" =3(aB+ Byt ya),
and so

& + 5+ =af+ Br+
which means

a=p=7
and
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a=m= — (a+b).
Substitution into (3.2) vields
e=a+b—{a$+b) = I

so that there are no non-trivial solutions of (3.1) (cf. Hunter, 1964). Leyendekkers
et al (1997) have generalised this in a modular ring. For the general theory of
symmetric functions the reader is referred to Macmahon (1915). In the context of
this note the issue is to what extent this approach could be applied to the question
in the final section.

4. Sums of Squares and Cubes
There is an infinity of integer solutions of

w? + o? = 2® + ¢t (4.1}

This may be verified by substitution

3m 3
S

372 2m 2 29
u=a v=b"t = a*™s* y=b"t, a,b,m,n,s,tc Z.

2

Forexample, whena 2,6 3.m 1,n 4,5 {1,

a3 2 2 . b
u=23%v=312 =22 y=35.

Thus,
82 + 531441% = 4® | 6561°. (4.2)

While the parameters s and ¢ merely ensure that (4.1) gives an infinity of
solutions, there are other solutions too. For instance,
222 1 62 =23 1 87,
3% +19° =3+ 7°,
3% 4 28% — 4% 4 93,

5. Conclusion

The particular case of equation (4.1) can be re-written in terms of the Fibonacci
and Lucas numbers (Hoggatt, 1969) as

F2 o (FS) = (12)* 1 (14",
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In itself this is neither here nor there, but it raises the question to what extent can
Equation (4.1) be generalised in terms of the Fibonacci and/or Lucas numbers by
analogy with the way Horadam (1961) generalised the Pythagorean equation:

(FoFra)” + (2Fns1 )" = (2F Fays 1+ FL)7,
though Horadam actually proved the result for generalised Fibonacci numbers,

and it was generalised even further by Shannon and Horadam (1973). Possible
avenues of pursuit are the results:

Fiynyay = 4F 5001y + Iy, (Shannon and Horadam, 1979),
Fl, + F2 = Fapis, (Hoggatt, 1969),
F3 o+ F = Fs, + FS (Vorob'ev, 1961).

We note in conclusion for the interested reader that Melham (submitted) has
generalised the last two results and stated a pertinent conjecture.
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