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ABSTRACT: Nagell’s totient 6(n,r) counts the number of solutions of the congruence (x)
n =z +y (mod r) under the restriction (z,7) = (y,7) = 1. In this paper we evaluate the number
6(n,r,q) of solutions of the congruence () under the restriction (z,7) = (y,r) = ¢, where g|r, via
Ramanathan’s approach to class-division of integers (mod r).

1 Introduction

Paul J. McCarthy [5, 6] has made an interesting study of obtaining the number of solutions of the
linear congruence

n=z1+x2+---- + x5 (mod 7) ‘ (1.1)
under various specified restrictions on z;, 7 == 1,2,...,s. Here, r denotes a positive integer and n is
any integer.

If N(n,r,s) denotes the number of solutions of (1.1) under the restriction (z;,7) = 1, i =

1,2,...,s ((z;,7) denotes the g.c.d of 2;; and r), it is known [3] that
1

N(n,r, s) = —Zc(Q,ch(m d). (1.2)

dlr

The function ¢(n, r) is the trigonometric sum due to Ramanujan given by

c(n,r) = Z exp<2ﬁinh>. (1.3)

h (mod r)
(hr)=1

The expression for N(n,r,s) given in (1.2) has also been obtained by K. G. Ramanathan [9], C.
A. Nicol and H. S. Vandiver [8] and David Rearick [10]. The simplified expression for N(n,r,s) is
given by

G (kY Vi 1 s et oV SO

N(n,r,s) =r° , ,
])5 pS

pl(n,r) plr

where p is a prime with the specified property. The form of N(n,r,s) given in (1.4) is due to H.
Rademacher. See [5].
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The evaluation of N(n,r,2), the case s = 2 of (1.2), is due to T. Nagell [7]. It is easy to note
from (1.4) that N(n,r,2) referred to as Nagell’s totient is given by

N(n,r,2)=r H <]—1> H (1-——2—>. (1.5)

pl(n,r) P plrpin #

We attempt a generalization of N(n,r,2) in the following manner. We consider the number of
solutions of the congruence

n=z+y (mod r) (1.6)

under the restriction (x,r) = (y,7) = ¢, where ¢ is an arbitrary but fixed divisor of . The number
of solutions of (1.6) with (z,7) = (y,r) = ¢ is denoted by 0(n,r, q).
When (z,7) = (y,r) = q, writing z = qz', y = qy’ we get

n=qx I qy (mod r) (1.7)

under the restriction (z/, :7) = (y/, -2—) = 1. It is easy to see that if ¢ Jf n, then 0(n,r,q) = 0. We also
note that "o

O(n,r,q) = N<E, 5,2> it q|n. (1.8)

So, from (1.5), we obtain the evaluation of 6(n,r,q) in the case where ¢ | n. When ¢ = r, we note
that O(n,r,r) > 0 if and only if r | n. Really, O(n,r,7) =1 and z = y = 0 is the only solution.

The purpose of this note is to evaluate 0(n, r, q) in closed form via Ramanathan’s [9] approach to
class-division of integers (mod r), see Theorem 3.2. We also evaluate 0(n,r, q) in terms of Euler’s
and Alder’s [11, Section V.6] totient functions, sce Theorem 4.1.

2 Preliminaries

An arithmetic function f of two variables n, r denoted by f(n,r) is said to be periodic (mod )
if f(n+r,7) = f(n,r), where r is fixed and > 1 (see [1]). An arithmetic function f(n,r) is called
an even function (mod r) if f(n,r) = f((n,r),r) (see [6, 11]). It is clear that every even function
(mod r) is periodic (mod 7). Ramanujan’s sum c(n,r) (1.3) is an interesting example of an even
function (mod r). Further,

eln, r) = Z [L((Ll)([, (2.1)

dl(n,r)

where p is the Mobius function given by

1 r=1,
gk == { (—=1)t if r = p1pa---pi; pi being distinct primes, (2.2)
0 ifa?|r, a>1.

Clearly c(0,7) = ¢(r), the Euler ¢-function. The Holder relation for ¢(n, ) is given by

(2.3)

Let e.(n) denote exp (2win/r).
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Lemma 2.1 Given r complex numbers wg, wy, ..., w, 1, there exist  uniquely determined complex
numbers ag, ai,...,ar—1 such that

r—1
iy, = Z amer(nm), n=01,2,...,r—1. (2.4)

m=0
Moreover, the coefficients a,, are given by

1 r—1
n = — wmep(—mm), n=0,1,2,...,7r—1 (2.5)
r

m=0

For proof, see Theorem 8.3 in [1]. From Lemma 2.1 we deduce

Lemma 2.2 Let f, g be periodic functions (mod 7). If

r—1
Pl T) = Z f(m,r)e.(nm), (2.6)

m=0

then 1
1 7]

) = = e (—nm). NG

f(n,7) - E g(m,r)e.(—nm) (2.7)

()

For proof, see Theorem 8.4 in [1]. The equivalent form of Lemma 2.2 for even functions (mod r)
in terms of Ramanujan sums c¢(n, ) is stated in

Lemma 2.3 Let f, g be even functions (mod r). If
(n,r) Zj( ) n,d), (2.8)

then

(n,r) = Zg(— r) “(n, d). (2.9)

Proof of Lemma 2.3 using the orthogonality relation for ¢(n,r) is given in [3].

Lemma 2.4 Let f be a periodic function (mod r) and let g be an even function (mod 7) such
that (2.6) holds. Then f is an even function (mod r) and g, f possess the relations (2.8) and (2.9)
respectively.

Lemma 2.4 can be deduced using Lemma C of K. G. Ramanathan [9].

3 Class-division of integers (mod r)

We now proceed to the class-division of integers (mod r). Let t;(= 1),t2,...,ts(= 7) be the distinct
divisors of n, where s = d(r), the number of divisors of r. The integers through r fall into s mutually

disjoint classes
C'la ("27 Fa g C’VS7

where
Gy={z: 1€, (&7 =%} (3.1)



Suppose that

Ci = {y1,¥2i,- - - Yui}, ~Where ui= ¢(£) (3.2)

t;

and N ,
Ci = {1, Y25, -, Yuj}, Where u'j = gﬁ(?—) (3.3)

L

Addition of C; and Cj denoted by C; &} is possible, where C;C)j is the set of numbers obtained by
adding (mod r) each number of C; to each number of C;. It is known that in C; & C; elements of a
class Cj occur the same number M (3, j, k) of times, see R. Vaidyanathaswamy [12]. For a concrete
example, see [11, Chapter XV] or [12]. The coeflicients M (%, j, k) can be evaluated in terms of
Ramanujan sums, see K. G. Ramanathan [9]. These results are given in the following theorem. The
proof is adapted from that given in [9].

Theorem 3.1 If C; and C; are two classes (mod r), then
Ci®Cy=> M, jk)Cs, (3.4)
k=1

where

M, 4, k) = %Zc(d, ;)(<df1>c<tké) (3.5)

d|r J

Proof Using elements of C; (3.2) and C (3.3), we form the product

(i er(”?//:i)) (i Cr(/'lr‘!/lj)) : ‘ (3.6)

h=1 1=1
If f(m,r) denotes the number of ways of expressing 1 as the sum
Yoi -+ Yuwj (mod ),
where yy; € Ci, yu; € Cj, we can write the product in (3.6) as

r—1

Z f(m,r)ey(nm). (3.7)

m=0

But every element of C; has g.c.d t; with r. Therefore,

U

> en{nyn) = C<”v ,lT_>

h=1 :
and, similarly,
U// r
er(nyy;) = C<n, T>'
=1 J
Thus, from (3.6) and (3.7), we have
T T o
cln,—)eln,—) = f(m,r)e.(nm). (3.8)
(ng)elng) =2
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But, the left-hand side of (3.8) is even (mod r), f is periodic (mod r) and (3.8) is compared with
(2.6). Then, by virtue of Lemma 2.4, f(n,r) is even (mod r), and utilizing (2.8) and (2.9), we get

c(n, ;)c<n, i—) = %f(d, T)C(n, %) (3.9)

1

or

1 r h T
Fln, 7} = - % (1((1, E)c(d, E)c(n, E> (3.10)
Therefore, by the definition of f(n,7), (3.4) holds with M (i, j, k) = f(tx, ). Taking n = t; in (3.10),
we obtain the evaluation of M (i, j, k) as given in (3.5). This completes the proof of Theorem 3.1.
O

Remark 1 We observe that 0(n, r, q) is the value of M (i, j, k) (3.5) when t; = t; = g and ty = (n,7),
or the value of f(n,r) (3.10) with ¢; = ¢; = q.

We now give the evaluation of 0(n,r, q) obtained via Ramanathan’s approach to class-division of
integers (mod r).
Theorem 3.2 The expression for O(n,r,q) is given by
1 o/T T ’
O(n,r,q) = ;Z(, (— —)c(u, d). (3.11)

d’q

dlr
Proof follows from Remark 1.

Remark 2 One could also obtain (3.11) considering the congruence (1.6) under the restriction
(z,7) € S1, (y,7) € S2 and applying the Cauchy product of even functions (mod r), where S; and
Sy are subsets of the set of positive integers. We do not apply this method here, as the object of this
paper is to evaluate 0(n, 7, q) via Ramanathan’s approach [9] to class-division of integers (mod 7).
For application of this method, see [4, 6].

4 The evaluation of f(n, r, ¢) in terms of Euler’s and Alder’s totients

Euler’s totient ¢(r) is the number of integers a (mod r) such that (a,r) = 1, see also §2. It is well
known that
1
o(r) = rII(1--). (4.1)
plr £

We denote by ¢o(r) the number of integers a (mod r) such that (a,7) = (a+1,7) = 1. The function
@9 is a special case of Alder’s totient. [t is known that

do(r) = [I(1 - %) (4.2)

plr

The derivation of (4.2) is shown in [11].
The function 0(n,r, q) is a multiplicative function in the sense that if (r,r') =1, ¢ | 7, ¢’ | 7/,
then (gr,q¢'r’) =1 and
O(n,r,q)0(n,r',q) = 0(n,rr', qq’). (4.3)
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We see that it suffices to evaluate 0(n,p®,p’), where p is a prime and a > b. In evaluation of
O(n, p®, p’) we use the expression for 0(n,r,q) given in (3.11) in the form

O(n,r,q) =

Zgb?( ,% ;c(n,d), (4.4)

which comes out using (2.3). We also use the concept of a unitary divisor of r which is defined as
a divisor 8§ for which (6,r/6) = 1.

We recall that 0(n,r, q) vanishes whenever g does not divide n. Therefore, it suffices to evaluate
O(n,r,q) when g | r and g | n. We now obtain the evaluation of #(n,r, q) in the following manner.

Notation We write r = riro, where rq is the greatest unitary divisor of r containing precisely
those prime factors which are common to r and n. Then ry is the greatest unitary divisor of r
such that (rg,n) = 1. We write ¢ = q1q2, where ¢ is the greatest unitary divisor of g such that
no prime factor of ¢ occurs to the same power as that in n. Then g is the greatest common
unitary divisor of g and n. Note that ¢y is such that every prime factor of g» occurs to the same
power as that in n and (q2,n/q2) = 1. We write 7y = s;s2, where s; is the greatest unitary
divisor of r; such that (s1,q2) = 1 and sz, ¢2 contain the same distinct prime factors. Note that

(T1,T2) - ((IU(IQ) - (31’82) == 1.

Theorem 4.1 With the above notation, onc has

S1N . (T282
O(n,r,q) =l — )¢ . 4.5
(n.7,0) = 6()o2(22) (4.5)

Proof By virtue of (4.3) we have

0(,”’7 r, (]) = ()(7"# T, (])0(”7 T2, 1)
= 0(n,s1,q1)0(n, s2,q2)0(n,ra, 1). (4.6)
Since (rg,n) = 1, we obtain

0(7?,,7"2,1) - N(’/l,’l‘g)?) = ¢2(r2>7 (47)

see (1.5) and (4.2). Again, by virtue of (4.3), it suffices to evaluate 0(n, s1,q1) and 0(n, sz, g2) when
the arguments are prime powers. The evaluations are given in Cases (i) and (ii).
Case (i). Let s; = p%, q1 = p® and n = p°. Then « > b > 0 and ¢ > b. If a > b, then using (4.4)

o(p"*1)

o*(p* ") b
0,0 = {1 a(p) o) + S
(v, 0", ") {1 o) )+ =5 )
27, b 1
B (/)(pz )<]| | )
pr GG
or
00, p",0") = (" "). (4.8)
Also, if a = b, (4.8) holds. Since ¢ is multiplicative,
O(n,s1,q1) = d)<s—1> (4.9)

q1
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Case (ii). Let s = p%, g2 = p® and n = p°. Thena > b >1and ¢ =b. If a > b, then using (4.4)

*(p"") b P’
0, p*p") = — {1+ -+ ) — s
(7", 7") {1 ®") = 5257}
B (/)Q(T)u,—— h) 1 e 9
! =( <b2<p>> =7 5>
or
0(p°,p"1") = d2(p"""). (4.10)
Also, if @ = b, (4.10) holds. Since ¢, is multiplicative,
S
0(n, s2, q2) = ¢)2<—2> (4.11)
q2

We note that Cases (i) and (i) could also be treated with the aid of (1.5) and (1.8). Since we
are dealing with class-division of integers (mod r) in this paper, we prefer the use of (4.4).
Now, from (4.6), (4.7), (4.9) and (4.11), we obtain

O(n,r,q) = </><;—1> sz(%) d2(rz).

Since ¢9 is multiplicative, the expression for 6(n, 7, q) is as shown in (4.5). This completes the proof
of Theorem 4.1. O

Remark 3 For a discussion of solutions of linear congruency (1.1) in a general setting with appli-
cation to matrices, see Umberto Cerruti [2].

The authors are grateful to Professor Andrew Granville for valuable comments which improved
the original version of the manuscript.
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