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1. INTRODUCTION AND PRELIMINARIES
A natural extension of the ideas explored in in [2] would be that of investigating
properties of the incomplete terms of the generalized sequences defined by the recurrence
Wn+2 = #W,,+1 + mWn , with arbitrary initial conditions. Nevertheless, for the reason

explained at the end of this section, we shall confine ourselves to considering the

incomplete terms of the Jacobsthal-type sequences {G,(lm)} and {H'(lm)} (u=1 in the

above recurrence) whose main properties have been established in [1]. In fact, we shall
parallel the arguments of [2] to discover the main properties of the incomplete Jacobsthal-

type numbers G’(lm)(k) and the incomplete Jacobsth.al-Lucas-typé numbers H’(lm)(k)

whose definitions are sketched below, and are formally given in Section 2.

Recall that the numbers Gr(lm) and H fzm) obey the second-order recurrence relation
Ar(lm) = Afﬂ + mAf:l; (m a positive integer) (1.1)

(here A stands for either G or H ), with initial conditions G(()m) ={l . Gim) =H im) = 1
and H\™ =2. Using standard methods (e.g., see (2.1)-(2.5) of [31) yields the following

closed-form expressions (Binet forms) for these numbers:

n n

a =

G™ =" "™ ad H™ =a"+8" (1.2)
n n m m
A
m
where

A, =Vam+ 1, 0, =(1+4)/2, B, =(1-4,)/2 (13)

so that



a, +B,=1 .o -B =4, ,ap =-m. (1.4)

Moreover, we recall that combinatorial expressions for the numbers in question are

~

n
—1-

G" =Y mBTT @2, (1.5)

r=0
A
n-r

H" =23 ——B (02D (1.6)

r=0
where
A=lm-1/2] and 7 =|n/2], (1.7)

h . : :
B, = (ﬁ,) , and the symbol |.| denotes the greatest integer function. Induction on n

provides the required proofs of (1.5) and (1.6). Another combinatorial expression for

H,(lm) is given in (2.6) of [1]. Namely, we have

n

(m) 1 2r _p

H" =— 3 4, B, . (1.8)
2 r=0

From (1.1), we can readily observe that, as special cases, one has

¢V =F and HV =1L, (1.9)
n n n n

¢G®»=J ad H®=j, (1.10)
n n n n

where F,,L,,J, and j, are the Fibonacci, Lucas, Jacobsthal and Jacobsthal-Lucas
(see [4]) numbers, respectively. Vice versa, the numbers defined by (1.2) [or by (1.5)
and (1.6)], with m arbitrary, can be viewed as a generalization of (1.10), whence the
title of this article. A further special case arises when m is a pronic number [m = h(h +
1)]. In fact, from (1.2) and (1.3), we get the expressions

gm _ D) -n’

. S and H™ = (h+ )"+ (h)", (1.11)

which, for h = 1, give the Binet forms for J, and j, (see (2.3) and (2.4) of [4]).
The numbers G,(lm)(k) and Hr(lm)(k) , which are the object of our study, are obtained

by letting the upper range indicators (the parameter k) of the summations on the r.h.s. of

(1.5) and (1.6) vary from O to n and n , respectively. It is worth mentioning that these
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numbers enjoy quite interesting congruence properties the simplest of which are illustrated
in Subsection 5.1. A more thorough study of the congruence properties of H r(lm)(k) led to
a supposedly new characterization of prime numbers. This discovery will be the object of
a future paper of which the present one can be seen as a prologue, and motivates our
confining the extension of [2] to the sequences investigated in [1].

2. DEFINITIONS OF THE NUMBERS G (k) AND H™(k)
After defining the integers Gr(lm)(k) and Hr(lm)(k) , we show their explicit expressions

for certain special values of k. As an illustration, Tables 1 and 2 display them (with m =
5) for the first few values of n.
Definition 1. Let the incomplete Jacobsthal-type numbers G,(lm)(k) be defined as

k
¢y LY BT (1=1,2,3,..0<k<A). @2.1)

r
r=0
Definition 2. Let the incomplete Jacobsthal-Lucas-type numbers H flm)(k) be defined as
k r

e nm — ~ P
H™ () & Zon_r B (n=1,23.:0<k<h). (2.2)
F=

Some special cases of (2.1) are

GO =1 @n=1), (2.3)
GM(1) = 1+mn-2) (23), (2.4)
G™@) = 1+ mim(n®~Tn+12)+2n-41/2  (n25), 2.5)
Gy = 6™ (=2, (2.6)
(n-2)/2 >
Gflm)(hv_ 1) = G,(,m) 3 f nm . /12 (n=4,even) @2.7)
\ m® (n>3, 0dd)
(n-4)/2 2
Gp(;m)(ﬁ_ 2) = G,(lm) B f nm o (24m +2n -4)/48 (n=6,even) (2.8)
\ m"2@m+n>-1)/8 (25, 0dd),

whereas some special cases of (2.2) are

H™0) =1 @21, (2.9)



H™W) = 14nm  (22), (2.10)

H™Q) = L+ nmm(n-3)+21/2 (n=4), 2.11)
H"@) = H™ (21 2.12)
n/2
(m)( 1= H(m) f (n=2, even) 2.13)
n
| am®™ 2 (n>3, 0dd),
H(m)( ) = H(m) fm(n 2)/2(8 + n2)/4 (n =4, even) (2.14)
™ Gdm e 15724 (25, 0dd).

The numbers Gr(ls)(k) and H’(ls)(k) are shown below for the first few values of n

and the corresponding admissible values of k.

Table 1. The numbers G’(f)(k) for 1<n <10

k
- 0 I 2 3 4

1 1

2 1

3 1 6

4 11

5 1 16 4

6 1 21 %

7 1 2 176 301

8 1 31 281 781

9 1 36 411 1661 2286
10 1 41 566 3066 6191

Table 2. The numbers Hff)(k) for 1<n <10

k
7 0 1 2 3 4 5
1
16
21 T
% 151

31 256 506

36 386 1261

41 541 2541 3791

46 721 4471 10096

51 926 7176 22801 29051
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3. PROPERTIES OF THE NUMBERS G,(,'")(k) AND H'(lm)(k)

Most of the properties established in this section pertain to sums of the numbers
under study along the diagonals, rows, and columns of the triangular arrays displayed in

Tables 1 and 2. Their proofs will be given in Section 4.

Warning. To save space, whenever G,(lm)(k) and Hr(lm)(k) enjoy the same property, it

will be stated only once, and the symbol A will stand for either G or H [cf. (1.1)]. In
general, the validity of these properties is subject to certain conditions on the value of & :
they can readily be derived from the conditions on k in (2.1) and (2.2). For example,
Proposition 2 holds for 0<k<(n-h-1)/2 (if A:=G),andfor 0<k<(n-h)/2
(f A :=H).

(m) (m)

Proposition 1. A (k+1) = A [(k+ 1)+mA( )(L) (recurrence relation). (3.1)

By using (2.1), (2.2) and the basic recurrence relation for binomial coefficients [6, p.
1], (3.1) can be readily transformed into the non-homogeneous second-order recurrence

relations
It if A =G
A(m k (m) (m) k
o = AN +mA G- T (3.2)
‘m nB, /I (n—-k) if A:=H.
The relation (3.1) generalizes beautifully as follows.
h
Proposition 2. Y. m" "B"A™ &+ = A") (k+h). (3.3)
r=0
Remark. Relations (3.1) and (3.3) coincide for h =1.
(m) (m)
k+1)-A_ &+ 1)
Proposition 3. Z A"k = Ansher = : (3.4)
r=0 ’
The main relation between G,(lm)(k) and H r(lm)(k) is then stated.
Proposition 4. H™ (&) = mG") (k- 1) + G (k). (3.5)

Note that, from (3.5) and (3.1) (for A := G), one gets immediately the equivalent relation

H™®) = 2mG™ (k- 1)+ G" k) (3.5



whence
2mG" (k- 1)

f H™ W) - ™)
(3.6)
\H'(lm)(k) + Gk = 26N ) .

Finally, let R'(lm) (resp. Sr(lm) ) denote the sum of all entries of the n-th row of the

array in Table 1 (resp. Table 2).

[m(47 + 6) + 7 + 11G" — mnH.")
4m + 1

n
Proposition 5. Rr(lm) <! Z Gr(lm)(k) = . (3.7

k=0

A

n
Proposition 6. Sr(lm) e 2 H'(lm)(k) = (1’1\+1)H’(lm)—- mntZi . (3.8)

4. PROOFS
Proof of Proposition 1 (for A := G). Use (2.1) to rewrite the r.h.s. of (3.1) as

k+1 k i k+1 k+1
n -r rn—r r n—r
Zm 2 = Zm Br +2m Br_1
r=0 = r=0 r=
k+1 k+1 )
nfr r n+l-r m
= -m’B" +2 [ 1]=_0+ Zom B" =G " (k+1)m
r=

Proof of Proposition 2 (for A := G). Let us use induction on h . Identity (3.3)
holds clearly for A =0 (trivially) and A =1 [see (3.1)]. Suppose it holds for a certain h
> 1. For the inductive step h :=h + 1, write

h+1 h+1
h+1- h 1 h+1- h h (
Z B GG Mk = Y m" r[Br+Br ] "k + 1)
= r=0
0 h (m) . h ()
m —r m
=mB,, G, (k+h+1)+m ZO m" " B"G "k +r)
r=
h
+ Y m""B"G"™ (k+r+)
r=-1

= 0+ mG™) (k+h)  [by the inductive hypothesis (i.h., for short)]

h

1 . h

B G+ Y, m"TBIG™ (k+r+1)
r=0
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= 0+mG") (k+h)+0+G") (k+h+1)  (bytheih)

(k+h+1) = G (k+h+1)  [from (3.1)] =

_ m
=6 +2(h+1)

n+2+2h
The proofs of Propositions 1 and 2 for A := H can be obtained in a similar way by
using the combinatorial identity (see [6, p. 64])

n-r n-1-r
n-r r = Br +Br—1 ° (4°1)

Proof of Proposition 3 (Hint). Use inductionon 4 and (3.1) =

Proof of Proposition 4. Use (2.1) to rewrite the r.h.s. of (3.5) as

k

k-1 . 5 k 1 k
Z mr+ n-2-r 2 r n— Z r n -r Z r n—
r=0 r=

r=1 r=0

-0+ 3 B = H™ () [from (4.1) and (2.2)] =

To prove Propositions 5 and 6, we need the identities

n-1- L
= 4.2
ZmrB 4m + 1 (4.2)

: (m) _ o ()
B ., mH" -2G"]
=0

and

n r
nm

2

r=0 -

= mntln_q . 4.3)

Proof of (4.2). By means of the same technique as that used in [5], first replace m
by the indeterminate x in (1.1)-(1.5), then write

d X n-1 n-1 2(&: - ﬁ:) 2
=G = I, + B ) - — 14 [from (1.2) and (1.3)]
= [nHY ~267 1 (4x + 1) (4.4)

and



n
G = z B"'"  [from (L.5)]. (4.5)
Equating the r.h.s. of (4.4) and (4.5) and letting x = m therein, yields (4.2) =
The proof of (4.3) is similar and is omitted for brevity.
Proof of Proposition 5. From (2.1) and the Lh.s. of (3.7), write

R™ = G™©0)+G"(1) + -+ G()

n

ot o e e
* {’"OB;_I +m1BT_2+’"2B;73 +o+m B’il "}
n
= 2 @+1-nm B = G+ DG 2 m B (from (L5)]
minH") — 26"

@+ 1DG™ - [from (4.2)],

dm+ 1

whence the desired result =

Proof of Proposition 6. By using (2.2) to rearrange the addends of the sum on the
Lh.s. of (3.8) (cf. the proof of Proposition 5) it is not hard to see that

~

n r
= @+DH" =Y r B! [from (1.6)]
r=0

S(m) Z (n+1—r)

whence one gets (3.8) by virtue of (4.3) =

5. CONCLUDING COMMENTS AND FURTHER RESULTS
The properties of the numbers G'(lm)(k) and H ,(lm)(k) are by no means exhausted by

the brief account given in this article. As a minor instance, we urge the interested reader to

prove the identity
c (m) (m) (m)
m m m
T[40+ - DA 0] = A @ 6.0
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5.1. Some simple congruence properties of A’(lm)(k)
The numbers A'(lm)(k) are clearly congruent to 1 modulo m by virtue of their

definitions (2.1) and (2.2). This implies that, for m even, they are odd.

Proposition 7. If m is an arbitrary natural number and n = g (h=0,1,2,..), then
A’(zm)(k) is odd for all admissible values of k.

Proof [for A :=G]. The statement is true for h=0and 1 since, for n = 2% and 2!,

we have
7=0,0<k<0,and G\"(0)=G"0)=1 [cf. 2.3)I.

For h>2,replace n by 2" in (2.1) and write
(m) : 2"1 h-1
 1-r -

Gy (k) =1+ m'B (1<k<2" -1)

-
r=1

whence it is sufficient to prove that

1 h-1
B = 0(mod2) for 1<r<2 -1 (h22). (5.2)

r

The proof of congruence (5.2) is based on a theorem of Singmaster [7], and is
available in the proof of Proposition 5 of [2] =

The proof for A := H is similar (see the proof of Proposition 12 of [2]) and is

omitted.

Proposition 8. For all admissible values of &, A’(:")(k) =1 (mod m?) if n=h (mod

m), where h =0 (resp. 2) for A :=H (resp. G).
Proof . From (2.2) and (2.1), write

r
nm
n—r

n

B
,

k
H™@®) = 1+mn+ Y, 7 = 1 (mod m?) if n=0 (mod m)
r=2

and

k
G = 1+mn-2+ Y, m B = 1(mod m*) if n=2 (modm) u
r=2

Finally, we leave the proofs of the following congruences as an exercise for the

interested reader:



A" k) = 1(mod n) Vk (h=1,2,3,..), (5.3)
(m) (m) (m) (m) - k
A= 1) A™ H) - A" k) AT (k= 1) = 0 (mod m" ) . (5.4)

5.2. A by-product result
Letting m =2 in (1.3) and (1.8), and A =1 (i.e., m = 2) in (1.11) allows us to
state the following proposition.

Proposition 9. If p is an odd prime and M, is a Mersenne prime, then

(p-1)/2
9"B? isa perfect number. (5.5)
5 2r
rs

Formula (5.5) produces all even perfect numbers greater than 6, and shows clearly
that all such numbers are congruent to 1 modulo 9. This combinatorial expression for
perfect numbers is supposedly new and might be of some interest: at least, this is the
opinion of the author of [8].
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