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Professor Anthony Shannon, or as all his friends call him - Tony Shannon, has carried out
a lot of research in different areas of mathematics: number theory, mathematical modeling,
fuzzy sets and others, but here we shall discuss only those, which are related to the area of
the Fibonacci-like objects. They appear in more than 40 papers published in “The Fibonacci
Quarterly” in about a 30-year period, as well as in other journals which we shall not discuss
here.

In general, Shannon’s papers can be classified into the following 4 groups:

e recurrent sequences and recurrent relations: [4, 5, 7, 9, 11, 14, 18, 19, 20, 21, 23, 24, 25, 26,
28, 29, 30, 33, 44, 49, 51, 61]

e extensions of Fibonacci and Fibonacci-like numbers: [1, 6, 8 17, 20, 21, 22, 28, 32, 34, 38, 43,
45, 40, 47, 54, 63|

e congruences on Fibonacci numbers: [12, 52, 57]

e other problems related to Fibonacci numbers: reciprocals of Fibonacci numbers [1, 58], gen-
eralizations of the Pythagorean theorem [2, 48], Farey-Fibonacci fractions [16], generating func-
tions [3, 10, 35], research on Fermat’s last theorem [27], Fibonacci and Lucas curves [37], Fi-
bonacci numbers and Diophantine quadruples [42], generalized Fibonacci continued fractions
[38], Asveld’s polynomials [39], convolution trees [41, 46, 59, 64|, some infinite series [53], some
summation identities [55], a generalization of the Catalan’s identity [56], relation between fuzzy
sets and Fibonacci sequence [64], Fibonacci analogs of the classical polynomials [15], functional
equations [62], the Jacobi-Perron algorithm [7, 13|, generalization of identities of Catalan and
others [36], divisibility properties of Fibonacci numbers [31], Fibonacci model of infectious dis-
ease [60].

Below we shall formulate some of the more interesting results from the above papers which
do not require the introduction of a large amount of additional information. Some of these
papers are reviewed by the author in “Zentralblatt fuer Mathematik” (Germany). The opinion
of the author is that the above cited papers illustrate Tony Shannon’s aspiration for elegant and
graceful mathematical miniatures.

In [6] there is a discussion of the sequence {wy,}, which ;satisfies the conditions

wy = a,w; = b,

Wy = PWn_1 — QWp_2 (n > 2),

where p, g arbitrary integers. It is proved that

p
(?wnwn+3)2 & (2Pwn+2(Pwn+2 - wn)>2 = (’LU?L + 2Pwn+2(Pwn+2 - wn))27
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p’—q
where P = 5.
A generalized third order recurrence relation

Tn = Prp_1+Qrn_2+ Rrp_3 (’IL > 3)7

where P, @, R are arbitrary integers, is discussed in [5]. Let the sequence {p,} = {rn} and po =
a,p1 = b, pa = c for integers a, b, ¢; the sequence {s,} = {rn} and s = 1,51 = P, 50 = P? 4+ Q,
and the sequence {t,} = {rp} and to = 3,t; = P, tx = P? + Q. Then

Pn =bsp_1+ (C - bP)Snf—Q +aRry_3 (n B 3))

[n/2] [n/3] n—m-—?2r m-+r n—22m—3r ym pr
sn = 2 x < m+r P R

m=0 r=0 T
[n/2]  [n/3] n N — 9 N
t, = E B Pn72m~3r m T > 0).
" mzzo r=0 n—m—2r< m-+r i Q™R" (n>0)

In [8] there is a definition of the sequence

T

W o = ;:l (=1 PyWe s (s=0,1,,r=Lin >r > 1),
J:

where P,; are arbitrary integers and Wg, (n =0,1,...,7 — 1) have suitable initial values. Let
w = exp(Zr),i? = —1, and

1 1 1
Qar 1 ap.2 Ay y
d= ) ,
a:fll a:le aﬂ;l
n
and let ) = X I Wy, 4 for k=0,1,...,7 — 1, where the sum is on all permutations
Yk=m i=1
of {z1,z9,...,zn}. Then
r—=1  (r—1)n -
Wes toptmttgiy =1 X Y (dw?)eS%.
j=0 k=0
If
7
T (=) Py, if (n > 0)
_ j=1
B, ==
1, if (n =0)
0, if (n <0)
and
T‘ .
Y (1Y Pu,_j, if (n>r)
j=1
Unp = r
X ,if(0<n<r)
o
0, if (n <0)
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where the P; are arbitrary integers and the «; are the roots of the equation

K
18
|
™M=

(=1 Py =0,

then {u,} and {v,} are called in [15] generalized Fibonacci and Lucas numbers, respectively.
There it is proved that

> X g™
Y upz" =exp( ¥ ——).
n=>0 m=1 m
Let
o0 m
U T
u(z) =exp( X }s
( m= m
Then
oo n oo m
> Lb(x') =ezxp(zt+ X __-__vm(ac) ),
n=0 n. m=1 m
from where it follows that
un(0) = upn!
and
05 Up (z)t" _ at OEO U, (0)t"
ae i) n! ne1 nl

n n ) 2l .- 2
Let U, = aa:g and V,, = o™ + A", where a = @, and 3 = u@ are the roots,
assumed distinct, of

32 px+q=0.
Let
@) = OZO anz”.
n=0
In [31] a sequence is introudced which is defined by the recurrence relation
Fnn=Fnn-1+NFnyn o,
where N > 0 and n > 2 are integers, Fiy; = F'y2 = 1, which has also the form

Fyn=(a"—=b")/(a —b),

where a, b are zeros of the equation 22 — 2 — N = 0, and for it the following equality is proved:

Fy kn -

) +1) . r n r Y —8 2s n—r—s p\yr

——F = Z g 5 ]IN,/\‘,leN,kFN,k—‘rl N .
N,k 0<r+s<n E ®

In [36] it is proved that for the generalized FFibonacci-type second order recurrence sequences
{wyn} and {u,}, for which wy = a,w; = b, a,b, p, q are integers, the integers

2 on, 2 2
AW Wi 0 Wy sWngrrs + €7@ UnU
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and 1
4w721wn+rwn+swn+r+s+t g 662q2(n+1)(c + wnD)2

are perfect squares, where
C = UppUsglly + UppsUpthy + Uy UpUs
and
D = upugqt + uUstpqy + Ugllpys,
v 2
e = pab — ga® — b2,

The following assertions are proved in [49]:
e The equality
nz?+ (n+r)z—(n+2r)=0

has rational solutions if and only if n = r(Fy,, 11 — 1) where m is an integer. The solutions

F—Fzm—l and —F—Fl"Lzl are independent of r.
2m+1— 2m+1—

o If 5|(Lom+1 — 4), the equality

nz? +(n+2r)z—(n+r)=0

& 5 N . L —d4 % =
has rational solutions if and only if n = Pilamisa) 7 Fom Fomt3 where m is an integer. The
: Fom+y2 _ Lam+42—3 _Fomny1  _ Lamya+3
solutions are Fomrs = Lamio—a and T = Tamie—d

o If 5/(Lom+1 —4), the above equality has rational solutions if and only if = 5s, s is an integer,

. _ : 5 Lgm—3 4 _ L‘.Z‘m,-+—'2+3
and n = s(Lgm+1 — 4). The solutions are —hﬂ—LgmHﬁ4 and —r

o If 5|(Lom+t1 — 1), the equality

nz? +(n—r)z—(Mn+r)=0

7'(L47n+1 - 1)
5

has rational solutions if and only if n = = rFon Fom 1 where m is an integer. The

; Fom-1 _ _Lam+3 Fomto _ _ Lawis—3
solutions are Fom — Lamii- Fomtt  Lamygi—1°

o If 5/ (Lom+1 — 1), the above equality has rational solutions if and only if r = 5s, s is an integer,
and n = s(Lopmy1 — 1). The solutions are Lom43 _ apg —Lemt2=3

LQ'ln-‘}—l*1 L2m+1—~1 :
o If 5|(Lom+1 + 1), the equality

1amd—

nz?+(n+r)z—(Mnm—r)=0

» . N p L 1 . .
has rational solutions if and only if n = r(Lamtatl) 7 Fopmt1 Fomyo where m is an integer. The
: Fory  _ Lamy2-3 _ Fomys  Lamyat3
solutions are Fomt1 Lam+3+1 and Fomt2  Lamys+1°

o If 5/(Lom+1+1), the above equality has rational solutions if and only if » = 5s, s is an integer,
and n = s(Lomy1 + 1). The solutions are fﬁ:—il and —%.
o If 5|(Lom+1 + 4), the equality

nz? +(n—2r)r—(n—r) =0

. % 3 3 (L 1144 ¥ %
has rational solutions if and only if n = LL—“”,)’—”) = rFom_ 1 Fomio where m is an integer. The
F‘Zm L'Zm—f—’l*B

Fomyr _ Lam+3 14 —
F2m+2 L4m+] +4 Fom—_1 L27n+l +4-°

o If 5/(Lom 1 —1), the above equality has rational solutions if and only if = 5s, s is an integer,
and n = s(Lam+1 + 4). The solutions are zﬁﬁj’—iz and -—%.
e The equality

solutions are

nzl 4+ (n—r)z—(n—2r)=0
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has rational solutions if and only if n = r(Fyy,+1 + 1) where m is an integer. The solutions are
Fom __Fomyo
F2m+1+1 and F2m+1 +1°

In [53] it is proved that if f has a domain of convergence which inciudes zo® and 2%, then

0o — k
by anxnUkTH-l - af(la )2 ﬂf($ﬁ )7
n=0 p° —4q

ot npr flza®) — f(zpF)
oy Vin = Vpi—4q

oo

7 - Bf(zak) — af(zs)
; an " Vin, = f(a;ovfk) + f(l/)””)
n=>0

Using the above equalities, the authors obtain a series of interesting trigonometrical equali-
ties. For example,

00 1\ .2n+1 g I .
S (=)= ® S_l:ll)(?n F1)8 = cos(xzcoskf)sinh(zsink@),
n=0 n .
0o -1 n+1 Qn_' 2knd
s (=1 (; )fm " — sin(zcosk0)sinh(zsinko),
il n)!

05 22" Hlsink(2n + 1)0

n=0 (2n)! = sin(zsink0)cosh(zcosk),
% 2®"sin2knb
z7sin2knt sin(zsink®)sinh(zcosko).
n=0 (271)!

The following interesting trigonometrical equalities are proved in [54] for the natural numbers
k and n, where the above g = 1:

tan " Up4o — tan™1U, = tan~1(

), if n is even,
n+1

1 Vot
tan"l(U—) + tan~}( ) = tan™ (12

, if n #£ —1mboxisodd,
n Un+2 Ugﬂ) o
_1\nr72
U U tanfl((—%%@%), kmbozeven,
tan‘l(U =) —tanfl(——(r}_k) =
k _ e
" " tan‘l(nghnl’i)7 k odd
AN A2 2
v tan*l(%?)—[]ﬁ), k even,
tan™} (=) — tan ™} () =
n +k _ n—
i tanfl((lzj—%lUk), k odd



Similar equalities are proved for the trigonometric function “tanh”.
Let the sequences {U,} and {V,,} be defined as above Let p and q be fixed real numbers.
The matrices My, p,, Xy and Ny, are defined as:

_ Uk+m _quk
Mk,m - [ Uk- —quk_nl b

Xi =

Vi Us
(p* —4qQ)Ux Vi |’

N, — ‘/}c+n7, _qu/IC
k,'m Vk ___qm ‘/Tl;*m )

Some properties of these three matrices are studied in [55].
The ideas for graph-theory interpretations of the Fibonacci numbers (see [50, 41, 46, 59] will
be not discussed here. They are the object of detailed description in a forthcoming book.
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