NUMERICAL PROPERTIES OF MORGAN-VOYCE NUMBERS

A.F. HORADAM

The University of New England, Armidale, Australia 2351

1. INTRODUCTION

A general class of number sets $\{X_n\}$ is defined recursively by

$$X_n = 3X_{n-1} - X_{n-2} (1.1)$$

with

$$X_0 = a, \ X_1 = b \ (a, b \text{ integers}).$$
 (1.2)

Particular cases arise as follow:

(B)
$$\frac{X_n \quad a \quad b}{B_n \quad 0 \quad 1}$$
(b)
$$b_n \quad 1 \quad 1$$
(C)
$$C_n \quad 2 \quad 3$$
(c)
$$c_n \quad -1 \quad 1$$
.

Cases (B), (b) give Morgan-Voyce numbers (used in ladder network analysis [4]), while (C), (c) produce number sets related to these. All four cases are specializations of corresponding polynomials $B_n(x), b_n(x), C_n(x)$, and $c_n(x)$ [3] when x = 1. Most of the results in this article were suppressed from [3] but are presented here as possibly having an interest per se.

2. BASICS

From (1.1), the roots of the characteristic equation

$$\lambda^2 - 3\lambda + 1 = 0 \tag{2.1}$$

are clearly

$$\alpha = \frac{3+\sqrt{5}}{2}, \ \beta = \frac{3-\sqrt{5}}{2}$$
 (2.2)

whence

$$\alpha\beta = 1, \ \alpha + \beta = 3, \ \alpha - \beta = \sqrt{5} = \triangle.$$
 (2.3)

Binet forms for B_n, \dots, c_n in (1.3) are

$$B_n = \frac{\alpha^n - \beta^n}{\triangle} \tag{2.4}$$

$$b_{n} = \frac{(1-\beta)\alpha^{n} - (1-\alpha)\beta^{n}}{\Delta} = B_{n} - B_{n-1}$$
 (2.5)

$$C_n = \alpha^n + \beta^n \tag{2.6}$$

$$c_n = \frac{(1+\beta)\alpha^n - (1+\alpha)\beta^n}{\triangle} = B_n + B_{n-1}.$$
 (2.7)

Admitting negative values of n to our definitions (1.1)-(1.3), we deduce from (2.3)-(2.7) that

$$B_{-n} = -B_n \tag{2.8}$$

$$b_{-n} = b_{n+1} (2.9)$$

$$C_{-n} = C_n (2.10)$$

$$c_{-n} = -c_{n+1}. (2.11)$$

3. SOME INTERESTING RELATIONSHIPS

Most of the following results are derivable from the recurrence relations (1.1)-(1.3) and/or the Binet forms (2.4)-(2.7), with (2.3). The notations F_n , L_n stand for the nth Fibonacci and nth Lucas numbers, respectively.

$$B_n = F_{2n} (3.1)$$

$$C_n = L_{2n} (3.2)$$

$$b_n = F_{2n-1} (3.3)$$

$$c_n = L_{2n-1} \tag{3.4}$$

$$B_n C_n = B_{2n} (3.5)$$

$$b_n c_n = B_{2n-1} (3.6)$$

$$B_{n+1} - B_{n-1} = C_n (3.7)$$

$$C_{n+1} - C_{n-1} = 5B_n (3.8)$$

$$c_{n+1} - b_{n-1} = c_n \qquad (3.9)$$

$$c_{n+1} - c_{n-1} = 5b_n \qquad (3.10)$$

$$b_{n+1} - b_n = B_n \qquad (3.11)$$

$$c_{n+1} - c_n = C_n \qquad (3.12)$$

$$C_n = 2B_n - 3B_{n-1} \qquad (3.13)$$

$$5B_n = 2C_{n+1} - 3C_n \qquad (3.14)$$
Simson formulas
$$\begin{cases} B_{n+1}B_{n-1} - B_n^2 = -(b_{n+1}b_{n-1} - b_n^2) = -1 \\ C_{n+1}C_{n-1} - C_n^2 = -(c_{n+1}c_{n-1} - c_n^2) = 5 \end{cases} \qquad (3.16)$$

$$\begin{cases} \sum_{i=1}^{\infty} B_i y^{i-1} = (1 - \overline{3y - y^2})^{-1} \\ \sum_{i=0}^{\infty} C_i y^i = (2 - 3y)(1 - \overline{3y - y^2})^{-1} \\ \sum_{i=0}^{\infty} C_i y^i = (-1 + 4y)(1 - \overline{3y - y^2})^{-1} \end{cases} \qquad (3.17)$$
Closed forms
$$\begin{cases} B_n = \sum_{k=0}^{n-1} \binom{n+k}{2k+1} \\ b_n = \sum_{k=0}^{n-1} \binom{n+k}{2k+1} \\ c_n = \sum_{k=0}^{n-1} \frac{2n}{n-k} \binom{n+k-1}{n-k-1} + 1 \\ c_n = \sum_{k=1}^{n-1} \frac{2n-1}{2k-1} \binom{n+k-2}{n-k} \\ n-k \end{cases} \qquad (3.24)$$

Summations
$$\begin{cases} \sum_{i=1}^{n} B_{i} = b_{n+1} - 1 = F_{2n+1} - 1 \\ \sum_{i=1}^{n} b_{i} = B_{2n} = F_{2n} \\ \sum_{i=1}^{n} C_{i} = c_{n+1} - 1 = L_{2n+1} - 1 \\ \sum_{i=1}^{n} c_{i} = C_{n} - 2 = L_{2n} - 2. \end{cases}$$
(3.25)
$$(3.26)$$

$$(3.27)$$

$$(3.28)$$

4. SPECIAL NUMERICAL PROPERTIES

Recurrence (1.1) is a particular case, when x = 1, of the polynomial recurrence

$$X_n(x) = (2+x)X_{n-1}(x) - X_{n-2}(x)$$
(4.1)

with initial conditions (1.2). Details of this generalization occur in [3].

Specializations of (4.1) when $x \neq 1$ which are of some interest arise when, say x = -4, x = -3, x = -2, x = -1, x = 0, x = 2, x = 3, x = 4, x = 5, x = 6, x = 8. A few of these facets of the theory, most of which have already been recorded in [3], are here reproduced for the reader's convenience.

- (i) Historical appearances of $\{B_n(6)\}, \frac{1}{2}\{C_n(6)\}, \{b_n(6)\}, \{c_n(6)\}, \{B_n(8)\}, \text{ and } \frac{1}{2}\{C_n(8)\}$ are to be seen in [5]. Seldom are these occurrences of more than a century's antiquity.
- (ii) x = 5 generates Fibonacci and Lucas numbers, e.g. $c_n(5) = F_{4n-2}, b_n(5) = \frac{1}{3}L_{4n-2}$.
- (iii) x = 4 gives rise to Pell (P_n) and Pell-Lucas (Q_n) numbers, e.g., $b_n(4) = P_{2n-1}, c_n(4) = \frac{1}{2}Q_{2n-1}$.
- (iv) $\{B_n(2)\}, \frac{1}{2}\{C_n(2)\}$ appear in [1, p.167].
- (v) $\{b_n(2)\}, \{c_n(2)\}\$ are listed in Euler [2,p.375].
- (vi) $\underline{x=-1}$: $\{B_n(-1)\} \longrightarrow \text{sextuple } \{0,1,1,0,-1,-1\} \text{ repeated } ad. \text{ inf.},$ $\{C_n(-1)\} \longrightarrow \text{sextuple } \{2,1,-1,-2,-1,1\} \text{ repeated } ad. \text{inf.},$ $b_n(-1) = B_{n+1}(-1),$ $c_n(-1) = -C_{n+1}(-1).$
- (vii) $\underline{x=-2:}$ $\{B_n(-2)\}$ \longrightarrow quadruple $\{0,1,0,-1\}$ repeated ad. inf., $\{b_n(-2)\}$ \longrightarrow quadruple $\{1,-1,-1,1\}$ repeated ad inf., $C_n(-2)=2B_{n+1}(-2),$ $c_n(-2)=-b_{n+1}(-2).$
- (viii) $\underline{x=-3}: \{B_n(-3)\} \longrightarrow \text{triple } \{0,1,-1\} \text{ repeated } ad \text{ inf.},$ $\{C_n(-3)\} \longrightarrow \text{triple } \{2,-1,-1\} \text{ repeated } ad.\text{inf.},$ $b_n(-3) = -C_{n+1}(-3),$ $c_n(-3) = -B_{n+1}(-3).$
- (ix) $\underline{x = -4}$: $B_{2n+1}(-4) = (-1)^n b_{n+1}(-4) = 2n + 1$, $C_{2n+1}(-4) = 2c_n(-4) = (-1)^{n+1}2$.

Other possible periodicity aspects (as in (vi)-(viii) above) might be investigated. Divisibility properties of the $X_n(x)$ in (4.1) in conjunction with (1.2), are indicated in [3].

Inevitably, some historical results are resurrected and their features given new life, e.g., in the American Mathematical Monthly, Vol.24 (1917), pp.82-3, the problem of finding the general term and sum to n terms of $\{B_n(2)\}$ is posed by George Sosnow (Newark, New Jersey) and solved by William Hoover (Columbus, Ohio).

Lastly, if we allow the symbolism $(k \ge 1)$

$$B_n^{(k)} = B_{n+1}^{(k-1)} - B_{n-1}^{(k-1)}$$
(4.2)

and

$$C_n^{(k)} = C_{n+1}^{(k-1)} - C_{n-1}^{(k-1)}, (4.3)$$

in which $B_n^{(0)} = B_n$, $C_n^{(0)} = C_n$, then, by (3.7) and (3.8), we eventually derive the elegant and compact connections

$$\begin{cases}
B_n^{(2k)} = C_n^{(2k-1)} = 5^k B_n, \\
B_n^{(2k+1)} = C_n^{(2k)} = 5^k C_n.
\end{cases}$$
(4.4)

Altogether, the theory flowing from (1.1), (1.2), and (4.1) presented in this paper obviously affords us further avenues for development while providing us with ample scope for simple mathematical pleasures.

REFERENCES

- M.H. Brocard. "Notes Élémentaires sur le Problème de Peel." [* PELL (et non PEEL)-editorial correction.] Nouvelle Correspondance Mathématique 4 (1878): 166-167.
- 2. L. Euler. Opera Omnia. Teubner, Leipzig (1911).
- A.F. Horadam. "New Aspects of Morgan-Voyce Polynomials." (To appear in the proceedings of the Seventh International Conference on Fibonacci Numbers and Their Applications, Graz (Austria) (1997).
- 4. A.M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." I.R.E. Trans. Circuit Theory 6.3 (1959): 321-322.
- 5. N.J.A. Sloane. "A Handbook of Integer Sequences." Academic Press (1973).

AMS Classification Number: 11B37.