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1. INTRODUCTION
A genefal class of number sets {X,} is defined recursively by
Xn =3Xno1 — Xy (L.1)
with
Xo=a, X;=b (a,b integers). (1.2)

Particular cases arise as follow:

X, a b
(B) B, 0 1
(b) b 1 1 (1.3)
(C) Cs 2 3
(c) e, -1 1.

Cases (B), (b) give Morgan-Voyce numbers (used in ladder network analysis [4]),
while (C), (c) produce number sets related to these. All four cases are specializations
of corresponding polynomials Bn(z), ba(z), Cn(z), and cq(z) [3] when z = 1. Most of the
results in this article were suppressed from (3] but are presented here as possibly having

an interest per se.

2. BASICS
From (1.1), the roots of the characteristic equation
M -3+1=0 (2.1)

are clearly

(2.2)



whence

af=1,a+f=3, a-B=5=A. (2.3)
Binet forms for B,,- -, c, in (1.3) are
B, = L8 (2.4)
B = (1 —ﬂ)a";(l —a)B* _ B, - B,_, (2.5)
Co = a"+p" (2.6)
o (1 +ﬂ)a";(1 +a)f" _ B, +B._. (27)

Admitting negative values of n to our definitions (1.1)-(1.3), we deduce from (2.3)-
(2.7) that

B., = —B, (2.8)
bon = bupy (2.9)
Cn = C, (2.10)
Con = —Cny1. (2.11)

3. SOME INTERESTING RELATIONSHIPS

Most of the following results are derivable from the recurrence relations (1.1)-(1.3) and/or
the Binet forms (2.4)-(2.7), with (2.3). The notations F, L, stand for the nth Fibonacci

and nth Lucas numbers, respectively.

By = B, (3.1)

Cn = Ly, (3.2)

be = Fy 4 (3.3)

cn = Ly (3.4)

ByCs. = Bs, (3.5)

b, = Ban—, (3-6)

Ba4t = Bpy = C, (3.7)
Cn41 —Cny = 5B, (3.8)
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bn+l - bn—l = Cn

Catl —Cpyg = 5bn
bn+l = bn . Bn
Cnt1 — Cp = Cn

Cn = 2Bn il 3Bﬂ—l
SB,‘ = 2Cn+1 = 3Cn
{ But1Bn-t — B} = —(bny1bp_y — b2) = —1

Cr41Cnoy — CZ = —"(Cn+1Cn—1 - C,Z.) =95

Simson formulas

T2 By = (1- By =)
Zibiy Tt = (1-2y)(1 - 3y — 42)!
ZoCiy' = (2-3y)(1 - 3y — y?)-!

Loy = (=1 +4y)(1 — 3y — y2)~!

Generating functions

n-1
( +k
Bo= 2 (5)
=o \2k 41
b,,:z<"+2’2“1)
Closed formsJ el 5 k1
R n (n+k—
C"—,g)n—k<n—k—~l _+1
“2n—-1/n+k—-2
kc"‘gqu( n—k)

- Bizbn+l-1=F2n+1_1

1=]
?:1 bi = B?n — F2n

n
1=1

?=1C,'=Cn—2=L2,.—2.

Summations
Ci=cny1—1=Lapyy — 1

4. SPECIAL NUMERICAL PROPERTIES

(3.9)
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

(3.15)
(3.16)

(3.17)
(3.18)
(3.19)
(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)
(3.26)
(3.27)
(3.28)

Recurrence (1.1) is a particular case, when z = 1, of the polynomial recurrence

Xn(z) = (24 2) Xn-i(2) - Xn-2(7)

with initial conditions (1.2). Details of this generalization occur in (3]

(4.1)

Specializations of (4.1) when = # 1 which are of some interest arise when, say z =

reproduced for the reader’s convenience.
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-4z=-3zs=-2c=-1,r =0,z =27z = =4,z =5z=6,z =8 A few

of these facets of the theory, most of which have already been recorded in [3], are here



(i) Historical appearances of {Ba(6)},1{C.(6)}, {64(6)}, {ca(6)}, {B.(8)}, and 3{Cn(8)}

are to be seen in [5]. Seldom are these occurences of more than a century’s antiquity.
(ii) = = 5 generates Fibonacci and Lucas numbers, e.g. cy(5) = Fen_2,b,(5) = %L4,,_2.

(iii) = = 4 gives rise to Pell (Pn) and Pell-Lucas (Q,,) numbers, e.g., by(4) = P,,_,, cn(4) =

%Q2n—l- .
(iv) {Ba(2)}, 3{Ca(2)} appear in [1, p.167].
(v) {6a(2)}, {ca(2)} are listed in Euler (2,p.375].

(Vi) z=-1. {Bn(-1)} — sextuple {0, 1,1,0, -1, ~1} repeated ad. inf.,
{Ca(-1)} —> sextuple {2,1,-1,-2, -1, 1} repeated ad.inf,,
bn(_l) = B,,“(-l),
cn(=1) = =Cryi(—1).

(Vi) z=_9. {Bn(—2)} — quadruple {0,1,0, -1} repeated ad. inf.,
{6a(=2)} — quadruple {1, -1, -1, 1} repeated ad inf.,

Ca(-2) = 2Bn41(-2),

cn(=2) = =bpy41(=2).

(viii) z=_3. {Bn(=3)} — triple {0,1, —1} repeated ad inf.,
{Ca(=3)} — triple {2, -1, -1} repeated ad.inf.,
ba(-3) = - n+1(—3),
en(—3) = - nt1(—3).

() 2= —4: Bupa(=) = (~1)"bni(~4) = 20 +1,
Cont1(—4) = 2¢,(—4) = (=1)"+12.

Other possible periodicity aspects (as in (vi)-(viii) above) might be investigated.

Divisibility properties of the X,(z) in (4.1) in conjunction with (1.2), are indicated in
(3].

Inevitably, some historical results are resurrected and their features given new life, e.g.,
in the American Mathematical Monthly, Vol.24 (1917), pp.82-3, the problem of finding
the general term and sum to n terms of {B,(2)} is posed by George Sosnow (Newark,
New Jersey) and solved by William Hoover (Columbus, Ohio).

Lastly, if we allow the symbolism (k > 1)

B = B3V - B! (42)
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and

C¥ =t — oM (4.3)

n-1

in which B® = B, cO =c,, then, by (3.7) and (3.8), we eventually derive the elegant

and compact connections

B'(‘2k) — C'(‘Zk—l) - 5"3,,,
(4.4)

B’(‘2k+l) s C,(,2")=5"C’,..

Altogether, the theory flowing from (1.1), (1.2), and (4.1) presented in this paper obviously
affords us further avenues for development while providing us with ample scope for simple

mathematical pleasures.
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