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The purpose of this note is to prove that if an integer can be expressed as the sum of
two squares, then any power of that integer can also be expressed as the sum of two
squares. This result complements Lagrange’s result that the product of two sums of
squares is the sum of two squares (3]. More general still is Waring’s problem [3].

For integers, n, zand y, if
0= 22 + y2,

then a well-known theorem in number theory states that n = N 2’m, where N € Z
(and may be unity) and m is square-free with no factors of the form 4k + 3in which
kis a non-negative integer [1]. We aim to prove that for a positive integer r and
integers aand b :

n" = a® + b°.

Let z=1z+ 1y, 2= -1
Then zN = (:z: + iy)r
(1) zr = Z( _ 1)]( r )xr-21y2) + LZ( — 1)] < ¥ )xT—Qj—ly2j+l
; 2) - 2j+1
J=0 =0
= a + 1b, say,
and (Z) =a—1b
Thus (22)" = a® + b,

that is, (2 +y%) = a’+b®, as required.

For example, for n = 13and r =5,



13=N’m=143+1)

=3 +2°
(3% +2%)° = 597" + 122° using z = 3 and y = 2 in (1)

= 371293.

Sometimes of course n may be expressed as the sum of two squares in more than one
way; for example,

145 = 12(4.36 + 1) = 82 + 92 = 122 + 1%,

This may be avoided by letting n = (m-+-1)2 +m?, where m is an integer > 1.
Suitable large values for n (or m)and r give extremely large values for a and b [cf.8].
The method used here can also be utilised to establish more neatly than the usual

proof that, more generally, the sums of two squares form a closed set under
multiplication [5]:

(a® +b°)(c? + d?) = (ac—bd)* + (ad — bc)?.

Using the fact that Gaussian integers (complex numbers with integral coefficients)
form a Euclidean ring, where the metric of a + i + b,a,beZ, is taken to be

d(a +1b) = a +b?,

one can further prove that the prime factors of a number which is the sum of two
squares are each the sum of two squares [7]. Fermat took this further and showed
that an odd prime number is the sum of two primes if, and only if, it is 1 (mod 4)
[4]. This means that numbers expressible as the sum of two squares can be
characterised as having no prime factors which are 3 (mod 4) [1]. Our expansion of
the product of two sums of two squares can be extended to sums of four or eight

squares. The four squares case is the Lagrange identity:



@+ + +dH) + v+’ + 20

5= (au—bv—cw—-dm)2+(av+bu+cz—dw)2

+ (aw — bx + cu + dv)’(az + bw — cv + du)’
This eventually leads to Lagrange’s famous theorem by also showing that every
prime is the sum of 4 squares [6]. Finally, Ewell [2] has an historical account of the

major results on representations of integers by sums of four or fewer squares, and
Stewart [9] discusses Minkowski’s proof of the two-squares theorem.
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