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Abstract

In similar manner to the analysis for even-exponent triples, this paper
uses the equivalence classes of the modular ring Zg to show why the
diophantine equation d™ =e™ + f™, where m is odd, is limited to

m =1 in Zg.
1. Introduction
We have previously analysed the diophantine equation [1]
2

c no_ bZn + aZn (11)

using an approach centred on the equivalence classes of the modular ring Zg [2]. In

this paper we also analyse for odd m the Diophantine equation in Zg

" =b"+a" (1.2)
This is a more complex situation in the context of Zg as a much larger number of
classes have to be considered. We first consider the cubic form and then generalise
to cover all odd m.
In a sense, of course, if z=a + b

 +yf = 2F (mod p)

but we are concerned with structure of the diophantine equations, not in the context
of Kummer’s ideals, but in the context of equivalence classes of Zg.



2. Cubic Triples

There are thirteen possible combinations of the classes for odd-exponent triples. This
number is arrived at by taking all possible combination of classes for < ¢,b,a > and
eliminating those that do not conform to the Zg rules of addition [2] giving equation
(1.2), or are not primitive. The odd powers of ¢, b and a fall in the same class as c,b
and a, respectively, since for z € Zg, 2™ = z. Unlike even powered triples, ¢ can be
even with a and b both odd in the present case. Five class-sets of this type occur

here.

The function for a number in class 7 in Zg is given by (6r; + (i — 3)) where r; is the

row in class 7. Thus, if this number is cubed, the function becomes:
6r;+(@—3)° =Ar* +Br*+Cr+D (2.1)

where A =6, B=3(i—3)x 6%, C=3(i—3)?x6 and D= (i—3)°. Table 1 lists
A, B,C and D for the six classes.

Classes 7 function A B C D
1 6rp—2 6° —18x12 3x24 -8
2 6ry—1 6° —9x12 18 —1
3 673 6° — — —
4 6ry+1 6° 9 x 12 18
5 675 + 2 6° 18x12 3x24 8
6 6rg+3 6 9x36 18x9 27

Table 1: Coefficients for cube of function r
Of course, the cube could be represented simply by (6R; + (i — 3)) where R; is the
row containing the cube. However, this form is of no direct use here since it would
obscure the cubic characteristic of the number.

For each class set, we take c in class 7, b in class j and a in class k.

=0 —a® =6 F(r*) + f(r)) + f(r) + E (2.2)



where f(r’) = (rf — rj.' - rz),f(rz) = B; r? - B; T]g — B, r,zc,f(r) =Ciri—Cjr;— Cyry

and E = D; — D; — Dy.
For example, for the < 2,1,4 > triple
63(7"; - r‘z - ri’) -3 X 36(1‘3 — 27‘? + ri) +18(ry — 4r; —7r4) + 6 =0 (2.3)

Dividing throughout by 18 gives the coefficients A = 12 for f (7‘3), B= —6for f (r2),
C=1for f (r) and E = (1/3). A bar over the coefficient symbols indicates division
by a suitable factor. Thus, no integer solution exists for this set. Another three

class sets give the same result (Table 2).

No Classes A B C E
<2,1,4> 12 -6 1 1/3
1
i
1

<4,5,2> 12 6 —-1/3
<1,2,2> 12 -6 -1/3
<544> 12 6 1/3

W N =

Table 2: Coefficients for f (rj), 9=1,2,3
The remaining nine class-sets are treated as follows. We divide equation (2.2) by w,
the lowest factor to give an apparent non-integer residual. This residual involves the
r values and has the form ((r; +r;) + d)/w or ((rj+r) +d)/w, withd = — 1,0 or
1. For example, for the < 2,3,2> set the residual is (ry — r;) /6. Since, for this
set, 7y = (c+1)/6 and r}, = (a + 1)/6, we get:
c=a+ 36t (2.4)

where ¢ is the value of the residual. The aim is to show that ¢ cannot be an integer.

Equation (2.4) is now cubed so that a cubic in ¢ is formed and this cubic is then
solved. The Appendix illustrates this for primitive Pythagorean triples..
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No Classes f(r*) fiGo) f(r) Residual
5 <86,5,4> 6(ra—ri-r)) 3@ri-2rl-1)) 2(2rs — r3) (re —T4 +1)/2
c=a—4(1-3t)
6 <5,2,6> 6(r; - 7'3 - rg) 3(2r§ + rg - 31"2) 2(rs — 2rg) —(rg+rg+1)/2
b= —(a+4(1-3t))
7 <2,32> 2(r3—r’2—r§) ——(rg—r';) - (ry—15)/6
c = a-+ 36t
8 <4,3,4> 2(7“2 - r'i - r:;) (’I‘i - r'i) - (ry —1y)/6
c=a+ 36t
9  <86,1,2> 6(ri-r—r)) 3@r+2i+rl) (22 —ri)+1) (re —1,)/2
c=a+4(1+3t)
10 <4,1,6> 6(7‘3 - ri’ - 'rg) 3(1",21 + 27‘% - 37‘2) —2(ry + 2rg) (rg — 16 —1)/2
c=a+4(1+ 3t)
11 <T,4,6> 6(r —ri—r)) =322 +r5+3r) (2(r, —2r5) - 1) — (ra+16)/2
b= —a+4(1+3t)
12 <3,2,4> 2(7"3 —rg —ri) (rg —ri) - — (ro+14)/6
a= —b+36¢
13 <2,5,6> 6(r3—ri—rd) —3(ri+21+3r2) (=20rs+2r6)—1) (ry—rg)/2
c=a—4(1-3t)

Table 3: Residual functions T
As can be seen from Table 3 the residual functions in ¢ are of two types:

z= +y+4(1+3t) (2.5)

r= +y+ 36t (2.6)

However, in each case the roots for ¢ are found to be equal and non-integer. An
example for each of the equations (2.5) and (2.6) should therefore suffice for the nine
sets.

Set <6,5,4>

Here
c=6rs+3 (2.7)
b= 6r5 + 2 (2.8)
a=6r,+1 (2.9)
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The residual is (rg — r4 +1)/2 (Table 3) and since 7 = (¢ — 3)/6 and r4, = (a — 1)/6,

we get (¢ — a + 4)/12 for the residual. Let this quantity equal ¢, so that:
c=a—4(1-3t)

Cubing both sides of equation (2.10) yields:
(® —a®) = f(a,t) = b%, so that & + ((a — 4)/4)t> + (1/3)((a — 4)/4)*¢

—a((a—4)/4)/36 —1/27 —b°/64 x 27 =0
With A, B, C as the roots,
—((a—4)/4)=A+B+C
(1/3)((a — 4)/4)> = AB+ AC + BC
Thus (A + B + C)? equals 3(AB + AC + BC) so that
A’ + B>+ C* = AB+ AC + BC
Hence A = B = C and

A= —((a—-4)/12)

But a is odd so that the numerator is odd and A cannot be an integer.

Appendix.)
Set <4,3,4>

Here
C = 67"4 + 1

b:67'3
4
a=6r4+1

The residual is (r4 — 7,)/6 so that,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(See the

(2.16)
(2.17)

(2.18)



¢ = a+ 36t (2.19)

When cubed, this gives:

5+ (a/12)8 + (1/3)(a/12)%t — b°/(36)° = 0 (2.20)
Thus

—(a/12)= A+B+C (2.21)

(1/3)(a/12)> = AB+ AC + CB (2.22)
Hence

A’+B*+C*=AB+ AC+CB (2.23)

so that A= B =C and

A= —(a/36) (2.24)
But a is odd and prime to 3 so that no integer solution is possible.
Since ABC = A®, for the class < 6,5,4 > we obtain from equations (2.15) and the
non-t term of equation (2.11) that (a® = — b%), so that ¢ = 0. Whereas, for the class
< 4,3,4> from equation (2.24) and the non-t term of equation (2.20) we find
(a® = %) so that c = (20/%)a.
This yields the two forms, namely equations (2.5) and (2.6).

3. General Solution for Odd Exponent Triples

In the general case for n > 3, the residual is of the form

6"(r; —r’

T Te) tu = —u)/n (3.1)

where v = —2, —1,0,1,2,3, according to the class (Table 4).

When n is a prime, Fermat’s theorem gives



n n n o__ L L
TP =Ty =Ty =Ti— T —Tp +1Q

(3.2)

No Class v; v; v (Ui—vi—wv) v —v;.” -}

ll <2,1,4> -1 -2 1 0 2" —2=nT

2 <452> i 2 -1 0 —-(2"=2)= —nT

3 <1,2,2> -2 -1 -1 0 -(2"=2)= —nT

4 <5,4,4> 2 1 1 0 2" —2=nT

5 <6,5,4> 3 2 1 0 3"-3-(2"-2)=n(S-T)

6 <52,6> 2 -1 3 0 2" —2-(3"-3)=n(T-1S5)

7T <2,3,2> -1 0 -1 0 0

8 <4,3,4> 1 0 il 0 0

9 <6,1,2> 3 -2 -1 6 3"—34+(2"-2)+6=n(S+T)+6

10 <4,1,6 > 1 -2 3 0 -(3"=3)+2"-2=n(T-29)

11 <1,46> -2 1 3 -6 -(3"-3)-(2"-2)-6=—n(T+S5)—6
12 <3,2,4> 0 -1 1 0 0

13 <2,56> -1 2 3 -6 -(2"-2)-(3"-3)-6=—-n(T+S5)-6

Table 4: The v-functions

S and T are integer; T = (2" —2)/n, S = (3" —3)/n, n is a prime.

As can be seen from Table 4 the v function has n as a factor, except for the classes
<6,1,2>,<1,4,6 > and <2,5,6 > which have a residual prime to n (i.e. +86).

The residuals, ¢, will thus be of two types:

6(r; —r; — i)/, (3.3)
or

(6(r; —r; — 1) £6)/n (3.4)
Equation (3.4) applies only to the three class sets noted above.
Substituting the components ¢, b and a into equations (3.3), (3.4):

t=(c—b—a—(v;—v;—v))/n (3.5)

As can be seen from Table 4 and equation (3.1) the 6 of equation (3.4) will cancel
out so that

n



c" = (a+b+nt)" (3.6)

If (a” 4+ b") = c", the function in ¢ is zero. Solving for ¢ will give n roots and their

value can be found as for the cubic triples.

Expanding equation (3.6) gives
" —a" = b =nQy + 0" +n"(a+b)t" " + 0" (n—1)
(@a+b)2" 224+ 0" 2 (n—1)(n—2)(a+b)*"°/6 +n"°
(n—1)(n—2)(n—3)(a+b)"""*/24+n"*(n - 1)(n - 2)
(n—3)(n—4)(a+b)°t""°/120 + ... (3.7)

If the left hand side of equation (3.7) is zero, then

"+ (@+b)t" "+ (n—1)(a+b)*t"%/2n+ (n—1)(n —2)
(a+b)>*t"2/6n° +.. =0 (3.8)

This polynomial in ¢ can have n roots, indicated by A, B,C, D, E, ... Thus
—~{a+bj=A+B+C+D+E+.. (3.9)
(n—1)/2n)(a+b)® = AB+ AC + AD + AE + ... (3.10)

From equation (3.9)

(a+b)?=(A*+B*+C*+D*+E>+.)+2AB+AC+ AD + AE +..)  which,
when combined with equation (3.10) yields:

(n—1)(A*+ B> +..) =2n(AB+ AC +...) —2(n — 1)(AB + AC + ...)
(3.11)

There are (n—1)n/2 terms in (AB+ AC+ AD+..)and n terms in
(A>+ B>+ C* +...), so that, A= B = C = ... would satisfy equation (3.11); that is

(n—1n=2(n-1)n/2 (3.12)

From equation (3.9) this means that



A= —(a+b)/n (3.13)
but, from equation (3.5)

t=(c—(b+a))/n— f(v)/n (3.14)
and since A = t, since all roots are the same.

c = f(v) (3.15)

However ¢ # 6 since 6 is in class 3 and there are no classes with ¢ in class 3 that give
f(v) =6 (Table 4). Hence c = 0.

Here we have taken n as a prime. However, a number ¢”~ may be expressed

(™ 2P1) g0 that above results apply generally to odd powered triples.
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Appendix

The method used here is illustrated by applying it to primitive Pythagorean triples.
For example take the class set < 43 4 > with

(6r4 + 1) = (673) + (61 + 1) (A1)
which gives the residual ¢ as

t=(rg—1y)/3 (A2)
or

c=a+18t (A3)
Squaring both sides of (A3) and putting the result in a quadratic for ¢ form, we get:

2 + (36a/18%)t — (b*/(18)*) = 0 (A4)

If A and B are the two roots, then

(A+B)= —a/9 (A5)
AB = —b*/(18)* (A6)
c b a T4 r, |t=(r4—r,)/3 | roots from eqns
(A5) and (A6)
% | 24| 7 ] 1 1 1, — (16/9)
—25 24 7 —13/3 1 —16/9
205 | 156 | 133 34 22 4 4, —(169/9)
—205| 156 | 133 | —103/3 22 —169/9
1381 | 1020 | 931 230 | 155 25| 25, — (1156/9)
— 1381 | 1020 | 931 | —691/3 | 1553 —1156/9

Table 5: Some examples of solutions for equations
(A5) and (A6)
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Unlike the odd powers greater than 2, the roots are not equal. Only one is an
integer. For the given examples, the other comes from a shift of ¢ into the negative

plane.
To illustrate why the relationship
A+ B2+ C* = AB+ AC + BC (A7)

implies that A= B = C, we assume A= (C +a) and B = (C +b). Substitution
into equation (A7) then yields

(@’ +b%) =ab (A8)
the roots of which are imaginary, so the only solution is that both a and b are zero.

For a reasonably accessible exposition of the history of Pythagorean triples and
Fermat’s Last Theorem the reader is referred to van der Poorten [3], especially
Lectures I and IV.
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