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In memory of
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The world-famous Hungarian mathematician Paid Erdos formulated in the Bulgarian
newspaper "Mathematical Post” No. 11/June 1993 the following problem: let the natural
numbers cy, a2, ...,ai satisfy the inequalities:

1< al< a2< e < an+l < 2.n.

Prove that there exist two numbers among them such that one of them divides the other.
We shall formulate a generalization of the above Erdos’s problem.
Let ai, «2, »»»an are integers in the interval [Em], where 2.|~y] > n > |+~. The following
assertion is valid.

THEOREM 1. There exist at least n —[y] pairs unordered and without reiteration ) of
these numbers, such that one of the numbers divides the other and this estimation is exact.
Proof: Eor two fixed natural numbers m and n, let S2 denote the number of the pairs which
satisfy the condition that the result of the division is a power of 2. We shall prove that
S2>n- r?l. Let

Ap = {a,lai = 2L(2p— 1), 1< 1<, p,qgt X"}

be a multiset, where A is the set of the natural numbers, 1< p < [y]. Obviously,

where X is the cardinality of the set X.

We shall prove that the minimum of S2 is obtained for some Ap, (1 < p < [¥) that
satisfy | As—Ar |< 1, for all sand r such that 1< s<r < [y].

Let us assume the opposite, i.e., that there exist s and r for which As —Ar > 1

Let us transfer one element of the set As to the set Ar. Therefore, we obtain the new sets
A's and A'r and the new number
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Then

Ar+ 1
S. + As+ 1< 0,

which is a contradiction with our assumption of the minimality of S2.

When 2. [y] > n > [y] it is easily seen that the minimal value of S2 is obtained for
Ap = 2 for Z —[y] different values of p and Ap — 1 for the rest values of p. This minimum
is equal to n —[y"|. The lower estimation is exact, which follows from the existence of the
multiset {rn,rn —1, m—([*%y] —1),m,m —1, in—(n —[y] — D} In this multiset the
pairs for which one number divides the other are exactly n —|"y"|- 0

Let ui,u2, e an be independently chosen by an uniform discrete distribution in the inter-
val [I,m]. We shall prove the following assertion.

THEOREM 2: The mean value of the number of the pairs (unordered and without reit-

erations) os these numbers, such that one ol them is a divisor of the other, is (1])

PROOF: Let P be the probability that from two arbitrary numbers in the interval [I,m] one
of them divides the other; let the mean value be E (n). Because the n—th number is chosen
indepedently from the first n — 1 numbers, then:

E(n) =E(n- 1)+ (n- 1).P

From E(2) = P it follows that E(n) —(']).P.
Let a and b be the chosen numbers. Then P is equal to

{(a,b):1<a=b<m}T{(ab):a\bp I1<a<b<rm}T{(ub:6la 1< b<acx< rn}
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it follows that

[—J = minr + O(rn).
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Then P = 2In?nr?]_LQ(1)- and P(\p), = (I%/I 21I,T“r’nH0(1), <



