SOME REMARKS CONCERNING FIXED POINTS IN PARTIALLY ORDERED SETS

Antal Bege
Faculty of Mathematics, University of Cluj, Romania
November 28, 1995

1 Introduction

In this paper we present theorems about fixed points for the mappings of a poset into itself.

We begin with some definitions from the theory of partially ordered sets, which will be used throughout the paper. The poset denotes a partially ordered set (i.e. a set with a reflexive, antisymmetric and transitive relation \leq), 0 and 1 being the least and greatest elements (if they exists) respectively. Let S be a subset of a poset P. An element x of P is an upper (lower) bound of S if $s \leq x$ ($x \leq s$) for all s in S. The terms the least upper bound and the greatest lower bound will be abbrevieted to sup and inf, respectively. We will say that a poset P is chain complete if every chain of P has a sup in P. A mapping f of a poset P into the poset Q is called antitone (isotone) iff for all $x, y \in P$, $x \leq y$ implies $f(y) \leq f(x)$ ($f(x) \leq f(y)$). If f mapping of a poset P into itself, x fixed point if f(x) = x.

A mapping f of a poset P into itself is called relatively isotone if $x, y \in P$, $x \le y, x \le f(y), f(x) \le y$ implies $f(x) \le f(y)$.

We enumerate some results:

Proposition 1. 1 (Amann [2]) Let (P, \leq) a poset such that every chain has upper bound (resp., lower bound), and let $f: P \rightarrow P$ be a map such that

$$x \le f(x)(f(x) \le x) \forall x \in R$$

Then f has at least one fixed point.

Theorem 1. 1 (Kolodner [5], Amann [2]) Let (P, \leq) a poset such that every chain has an infimum(resp.supremum) and let $f: P \rightarrow P$ be isotone. Suppose that there exists an element $x_0 \in P$ such that

$$f(x_0) \leq x_0(x_0 \leq f(x_0))$$

Then f has a fixed point.

Corollary 1. 1 (Tarski [7]) Let L be a complete lattice and let $f: L \rightarrow L$ be isotone. Then f possesses a least and a greatest fixed point.

Theorem 1. 2 (Klimes [3]) Let L be a complete lattice, and $f: L \rightarrow L$ be antitone mapping. Then there exists a fixed point of f^2 .

Same theorems established A.E.Roth [6].

Theorem 1. 3 (Abian and Brown [1]) Let P be a chain complete poset and let f be an isotone mapping of P into itself. Then f has a fixed point.

Theorem 1. 4 (Klimes [4]) Let P be a chain complete poset and f be a relatively isotone mapping of P into itself. Then f has a fixed point.

We observe that in Proposition 1.1 we have $x \le f(x)$ every $x \in P$ and in Theorem 1.1 we have $x_0 \le f(x_0)$ for some x_0 and f isotone; if the mapping antitone we can establish a fixed point theorem to f^2 .

2 New fixed point results

From this observations we establish some results. We introduce the concept of weak isotone mapping and establish same theorem for Theorem 1.4.

Definition 2. 1 Let f be a mapping of a poset P into itself. f is called weak isotone if $x, y \in P$, $f(x) \le y$ implies $f^2(x) \le f(y)$ or $x \le f(y)$ implies $f(x) \le f^2(y)$

Proposition 2. 1 Let (P, \leq) a poset such that every chain has an upper bound ,and let $f: P \rightarrow P$ be a map such that

$$\forall x{\in}P, \exists y{\in}P: x{\leq}f(y) and f(x){\leq}y$$

Then f^2 has a fixed point.

Proof

Zorn's lemma implies the existence of a maximal element m of P. Then exist $y_1 \in P$ such that:

$$m \le f(y_1)$$
 and $f(m) \le y_1$.

but for maximality of m we have $m = f(y_1)$. Then for $y_1 \in P$ exist $y_2 \in P$ such that

$$y_1 \leq f(y_2)$$
 and $f(y_1) \leq y_2$

But $m = f(y_1) \le y_2$ implies $y_2 = m$ and we have $y_1 \le f(m)$ and $f(m) \le y_1$ which implies $f(m) = y_1$ or $m = f^2(m)$.

Theorem 2. 1 Let (P, \leq) a poset such that every chain has an infimum and let $f: P \rightarrow P$ be antitone. If exists $x_0, x_1 \in P$ such that

$$x_0 \le f(x_1) and f(x_0) \le x_1$$

then f^2 has a fixed point.

Proof

f antitone, implies f^2 isotone and $x_0 \le f(x_1)$ implies $f^2(x_1) \le f(x_0) \le x_1$. Because every chain has an infimum Theorem 1.1 implies that f^2 has a fixed point.

Remark

If L be a complete lattice the theorem implies Theorem 1.2.

Proposition 2. 2 Let (P, \leq) a poset such that every chain has an lower bound and $f: P \rightarrow P$ weak isotone such that for every $x \in P$ exist $x_1 \in P$ such that:

$$f(x_1) \leq x and f(x) \leq x_1$$
.

Then f^2 has a fixed point.

Proof

By Zorn'S lemma we have a minimal element m of P. Then

$$\exists x_1 \in P : f(x_1) \leq m, f(m) \leq x_1.$$

Minimality of m implies $f(x_1) = m$.But f weak isotone, $f(m) \le x_1$ implies $f^2(m) \le f(x_1) = m$ for which $m = f^2(m)$.

Theorem 2. 2 Let (P, \leq) a poset such that every chain has an infimum and $f: P \rightarrow P$ be weak isotone. Suppose that there exists an element $x_0, x_1 \in P$ such that:

$$f(x_1) \leq x_0, f(x_0) \leq x_1.$$

Then f^2 has a fixed point.

Proof

Let $X = \{x \in Pl \exists x_1 \in P : f(x_1 \leq x, f(x) \leq x_1\}$ and observe that X is not empty $(x_0 \in X)$ and $f(X) \subset X$, because if if $y \in f(X)$, $\exists x \in X : f(x) = y, x \in X$ implies $\exists x_1 \in P : f(x_1) \leq x, f(x) = y \leq x_1$ implies $f^2(x_1) \leq f(x) = y$ and $f(y) \leq f(x_1)$ which implied $y \in X$. But f weak isotone: $f(x) \leq x_1$ implies $f^2(x) \leq f(x_1) \leq x \forall x \in X$. Proposition 1.1 implies the existence of fixed point to f^2 .

References

- [1] Abian S., Brown A.B., A theorem on partially ordered sets, with applications to fixed point theorems, Canad. J. Math. 13(1961), 78-82.
- [2] Amann H., Order structures and fixed points, ATTI del Seminario di Analizi Funzionale e Applicazioni 1977,1-51.
- [3] Klimes J., Fixed edge theorems for complete lattices, Arch.mat.17(1981),227-234.
- [4] Klimes J., Fixed point characterizations of completeness on lattices for relatively isotone mappings, Arch. Mat. 20(1984), 125-132.
- [5] Kolodner I., On completeness of partially ordered sets and fixed point theorems for isotone mappings, Amer. Math. Monthly, 75(1968), 48-49.
- [6] Roth A.E., A lattice fixed point theorem with constraints, Bull. Amer. Math. Soc., 81(1975), 136-138.
- [7] Tarski A., A lattice theoretical fixpoint theorem and its applications, Pacific J.Math.5(1955),285-309.