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1. INTRODUCTION
Italian TV serials seem to be a good source of mathematical problems (e.g., see [4],
and the comment [5] by the Editor of the Advanced Problem column of the journal where
the problem was published). During the TV serial Buona Domenica (Happy Sunday) a
player is challenged to walk along a predetermined parh (which is unknown to him) on a
4-by-10 chessboard. A red light warns him about any off-path step.
While watching this serial, the second author's wife asked the following question.

Question 1. What is the probability ¢ that the red light never glows? In other
words, what is the probability that the player travels the right path at his first attempt?

The answer could not be given immediately. In fact, posing the question in a more
general form gave rise to this note and the research works [1] and [2]. To our great
surprise, the ubiquitous Fibonacci sequence {F; } is involved in the answer to Question
1. Namely, we get ¢ = 1/(2F,;). As we shall see, letting n be the length of the
chessboard (n = 10 in the original problem), we get ¢ = 1/(2F,,,,). Furthermore, if we
let m =3 be the width of the chessboard (m = 4 in the original problem), we encounter
the Pell sequence {P;}. A supposedly new 4-by-4 Fibonacci matrix and some

trigonometrical identities emerge from our study as by-product results.

2. THE PROBLEM
Let A be an m-by-n matrix (chessboard) with entries a, . 1<h<m;1<k<n).

Leta path in A be defined as an ordered collection of points (entries) {vy, vy, ..., Vi,

..., v, } subject to the following constraints:

i v, =a (I1<h<m); (2.1)

1 h, 1

(i) For 2<k<n,the successor v, of v, , =a, , | is

Ial L Ora,, (h=1)
v a, . ora, (h =m) (2.2)

k= k m-1,k
: - <h<m-
\ Qp_y o OF @y Or a, 2Lh<m-1).
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To clarify what said above, a path in a 5-by-11 chessboard is shown in Figure 1.

1 k — n=11

Figure 1. A path in a 5-by-11 chessboard

Question 2. What is the probability that a player travels a predetermined path in A
at his first attempt?

This probability is clearly given by the reciprocal of the number p,(m) of all distinct
pathsin A . Two paths are said to be distinct if they differ by at least one point vy .

In the next section an algorithm is given for finding p,(m).

3. HOW TO FIND p,(in)
It is evident that

m

p,(m) = Y, S, m) (3.1

h=1

where S, n(m) (or simply s b if no misunderstanding can arise) is the number of all

distinct paths whose terminal pointis «, . From (2.2), we get the relations

h,

S, 1 = 1 (I1£h<m) (3.2)
and, for n =2,

I sl, n—1 T 82. n—1 (h = 1)

= y < h< -
Sh, n Sh—l, n—-1 ¥ ‘sh, n—-1 * Sh+1‘ n-1 (2<shsm-1). (3.3)
\ Sm—l. n-1 T Sm, n-1 (h=m).
Now define the vector
T
Sp = [Sl, nd 52 nr e S, rz] 2 (3.4)

where the superscript T denotes transposition, and the m-by-m tridiagonal matrix
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1100000
1110000
R - o 111000/ o
0000-.-111
0000---01 1|

From (3.3), (3.4) and (3.5) we can write the matrix difference equation

s = R s (3.6)

n m n-1

with initial condition

T

S, = (L, 1,..,1] [ef. (3.2]] (3.7)
whence we get
n-1

Sn = Rm S1 ) (38)

Relations (3.8), (3.4) and (3.1) allow us to state the following proposition.

Proposition 1.  The number p,(m) is given by the sum of all the entries of s,
that is, the sum of all the entries of the (n — 1)st power of the matrix R

Nowadays, one may have at disposal several software packages which rapidly
perform matrix operations. Moreover, since R = is an integer matrix, no precision
problem can arise, so that rising it to any (reasonably high) power is a rather easy task.

On the other hand, as we shall see in the next section, one may take advantage from
the results established in [4] for obtaining a compact form for p,(m).

4. A COMPACT FORM FOR p,(in)
Properties of a certain class of Toeplitz matrices (which R~ belongs to) have been

thoroughly investigated in [1] (see also [2]). The results pertaining to R that are

relevant to this note are reported in Propositions 2 and 3.
.l RS ﬂ(n,) n N o s .
Proposition 2. The generic entry "k of R~ (n20,an integer) is given by

m

(n) jkr
= : <h k<
"k T g 1 .2 /1 sin—=—— (1<h k<m), 4.1)

where
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A, = 1+ 2cos 7 G=1,2,..,m) (4.2)
J m+1

are the eigenvalues of R .

Proposition 3. The sum 0'151") of all r;")k is given by

Lan+1)/2]

(n) 2 n 22/ -
= _;_ . e 4,
Om m+1 i lzj—l ot 2m + 2 (4.3)

where the symbol | - | denotes the greatest integer function.

A compact form for p,(m) can now be derived from Propositions 1 and 3.

Ln+1)/2] .
-1 22j-Drm
A" — 4.4
jgl 21 0t 2m + 2 (%4)

. B (n-1) _ 2
Proposition 4. p (m) = 0, = m+ 1

5. SOME SPECIAL CASES
An explicit form for p,(m) can be readily obtained for early values of m . The cases

m=3 and m =4 are of particular interest to us.

Proposition 5. pn(l) = 1 ¥n. (5.1)

o (5.2)

|
S}

Proposition 6. p (2) =

Both (5.1) and (5.2) are trivial results. On the other hand, they can be immediately
obtained from Proposition 4 and (4.2).

Proposition 7. p (3) = ;—Q =P +F (5.3)

n+l n n+l
where @, denotes the nth Pell-Lucas number [3].

Proof. Since A, =1+V2, A3 =1 -2 [see (4.2)], cot(nr /8) =2 + 1 and
cot(37/ 8) =2 — 1, from Proposition 4 we get the expression

P,3) = I+ +(1-42)"]

which equals the right-hand side of (5.3) by virtue of the closed-form expressions (Binet
forms) for Pell and Pell-Lucas numbers (e.g., see [3]). Q.E.D.
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Proposition 8. p (4) = 2F (5.4)

2n+1 °

Proof. Since A =[(1+\5)/21=a’, A, =[(1-\5)/ 21" = f° [see (4.2)],
cot®(m/ 10) = V5¢2 and cot?(37/ 10) = V5(- [3)3, from Proposition 4 and the Binet

form for Fibonacci numbers, we get

2n+1 2n+1

P = @™ —p"") = 2F,, . QED.

Proposition 9.
p(5) = % [2 +V3) 20+ V3)" ™ + 2= V3)2(1-v3)"' + 1]. (5.5)

Proof. Observethat A, =1+V3, A, =1, A5 = 1 = V3 [see (4.2)], cot’(n/ 12) =
(2 +V3)%, cotX(m/4) =1 and cot’(57/ 12) = (2 —V3)2, and use Proposition 4. Q.E.D.

Remark. By using standard techniques, it can be proved that p,(5) obeys the second-

order non-homogeneous recurrence relation

p(5)=1,py5)=13:p,(5) = 2p,_(5)+2p, ,(5)~1 for n23. (5.6)

6. RELATED RESULTS

Our study gave rise to the following by-product results.

(1) Fibonacci matrices are matrices the entries of the powers of which are related to
Fibonacci numbers. It can be proved that R, is a Fibonacci matrix (ct. Proposition 8). In
p 4 P
B n . n & = .
[2] we proved that all the entries r(h )k of R, involve Fibonacci numbers. For example,

we found the identities

m _ 0 _ g

Ty = Ty = v FLDI2 (6.1)

the proofs of which can be readily carried out by using (4.1) and (4.2). We urge the
reader to enjoy discovering the "Fibonacci properties” of the matrix R, -1, (I; being

the 4-by-4 identity matrix).

(i) Letting n = 0 and 1 in (4.1) yields the supposedly new trigonometrical
identities

< thC i]\)'[ +1
O e . JK . m
j; s m+ 1 st m+1 2 511, k® (6.2)



- 140 -
( Sh = 1 (0) for h=(#)k being the Kronecker symbol), and

(6.3)

Z W L Jhr i Jkr m+1 5
m+1 m+ 1 m+1 4 h

respectively.

(iii) The numerical evidence emerging from a computer experiment suggests the

following conjecture which has been proved by us for 0 <n < 3.
n
Conjecture 1. The quantity 0"1 ) (see Proposition 3) can be expressed as

" n ,
o =3m-X (mzn), (6.4)

m

where {X k.

o = {0, 2,10, 40, 146, 508, 1716, 5682, ...} is a sequence of integers

which is independent of m .

All our attempts to discover (conjecture) the rule of generation of this sequence were
unsuccessful. The interested reader is challenged to achieve this goal, and to prove Conj.
1 for all nonnegative values of n .

As an example of application of Conj. 1 (for the values of n for which it has been
proved), we put n =0, 1, 2 and 3 in (6.4), and use (4.3) and some well-known

trigonometrical identities to obtain the hopefully new identities

1)/2 .

L(mi) 1 c0t2 2j-Dr ( m+ 1 ) 6.5)
= 2m+1) 2 ’ .
j=1
m+1)/2 m+1)/2

: i) . cog? Zj-Hr . HZ) ! “in 22j-Dr m+1 6.6)
by 2m+1) & m+1 4 )
j=1 j=1

and
L(m+1)/2] ) »
(21 = 1)7T i (21 -Dr 42 m+1
: _ e
121 [ m+ 1 ] 8 m 2 3), (6.7)

respectively. It has to be noted [see the condition imposed in (6.4)] that the second
identity in (6.6) does not hold for m=1.
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