THE FERMAT EQUATION (III)

Aldo Peretti

Universidad del Salvador, Buenos Aires, ARGENTINA

ABSTRACT: On the basis of a former paper [1], the author presents a simplified analytical way in order to determine the number of solutions of the Diophantine equation of the title.

1. As was shown in [1], we have that (n is a natural number)

$$F(x) = \frac{{\binom{k}{x}} + 0}{2} + {\binom{k}{x}} - 0} - \frac{{\binom{k}{x}} - 1 + 0}{2} + {\binom{k}{x}} - 1 - 0}{2}$$

$$= \begin{cases} 1, & \text{if } n < x < n + 1 \\ 1/2, & \text{if } x = n \text{ or if } x = n + 1 \end{cases}$$

$$0, & \text{otherwise}$$

$$(1)$$

where [u] denotes the greatest integer function.

Hence, the graph of F(x) consists of segments of length 1 and height 1 comprised between the points x=n and x=n+1; has the value 1/2 at x=n or x=n+1; and vanishes at all other points.

It follows that if we form:

$$D_{K}(x_{1}, x_{2}) = \frac{1}{2} \{ \begin{bmatrix} V & x_{1} + x_{2} + 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 1 - 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 1 - 0 \end{bmatrix}$$

$$+ \frac{1}{2} \{ \begin{bmatrix} V & x_{1} + x_{2} - 1 + 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 1 - 0 \end{bmatrix} + \begin{bmatrix} V & x_{1} + x_{2} - 1 - 0 \end{bmatrix}$$
(2)

then we have:

$$D_{k}(x_{1},x_{2}) = \begin{cases} 1, & \text{if } n < x_{1}^{k} + x_{2}^{k} < n + 1 \\ 1/2, & \text{if } n = x_{1}^{k} + x_{2}^{k} \text{ or } n + 1 = x_{1}^{k} + x_{2}^{k} \\ 0, & \text{otherwise} \end{cases}$$
(3)

from which we derive the twin formulas:

$$\frac{S_{K}(z_{0}) + S_{K}^{*}(z_{0})}{2} = \sum_{2 \le x_{1}^{1} + x_{2}^{1} \le z_{0}^{1}} D_{K}(x_{1}, x_{2})$$
(4)

$$S_{k}(z_{0}) + S_{k}^{*}(z_{0}) = \int \int \int_{2 \le x_{1}^{k} + x_{2}^{k} \le z_{0}^{k}} D_{k}(x_{1}, x_{2}) \cdot dx_{1} \cdot dx_{2}$$
 (5)

where $S_{k}(z)$ is the number of solutions of the equation x + x = x and x + x = x for $x \le z$; and $S_{k}(x)$ is the same thinh for the equation x + x = x + x = x being counted as different x + x = x + x = x.

2. The calculation of the number of solutions through formula (4) presents unsurmontable difficulties; in change, the way using formula (5) turns out to be eccessible.

The familiar development of the saw-tooth function

$$[x] - x + 1/2 = \sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n\pi}$$
 (6)

when written as

$$\frac{\{x + 0\} + \{x - 0\}}{2} = x - 1/2 + \sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n\pi}$$
 (7)

is valid for all real values of x, including the points of discontinuity.

Taking account of what is stated in [2], formula (7) can be also written as

$$\frac{[x + 0] + [x - 0]}{2} = x - 1/2 + \sum_{n=1}^{N} \frac{\sin(2n\pi x)}{n\pi} + O(\frac{1}{N.x}).$$
 (8)

$$S_{K}(z_{0}) + S_{K}(z_{0}) = \iint_{D} \sqrt[K]{\frac{k}{k} + \frac{k}{k}} - \sqrt[K]{\frac{k}{k} + \frac{k}{k} - 1}$$

$$+ \sum_{n=1}^{N} \frac{1}{n \cdot n} \cdot \sin(2n\pi \cdot \sqrt{\frac{k}{x}} + \frac{k}{x}) - \sum_{n=1}^{N} \frac{1}{n \cdot \pi} \cdot \sin(2n\pi \cdot \sqrt{\frac{k}{x}} + \frac{k}{x} - 1) + \frac{1}{N} \cdot O(\frac{1}{\sqrt{\frac{k}{x}} + \frac{k}{x}}) \cdot dx_{1} \cdot dx_{2}.$$
(9)

Here D denotes the region 2 \leq x + x \leq z .

Now, according to elementary textbooks, we have that the integral of a finite sum is equal to the sum of the integrals of the individual terms, so that we can write:

$$S_{R}(z_{0}) + S_{R}(z_{0}) = \iint_{D} (I_{1} - I_{2}) \cdot dx_{1} \cdot dx_{2} + \sum_{n=1}^{N} \frac{1}{n \cdot n} \cdot \iint_{D} I_{3} \cdot dx_{1} \cdot dx_{2} - \sum_{n=1}^{N} \frac{1}{n \cdot n} \cdot \iint_{D} I_{4} \cdot dx_{1} \cdot dx_{2} + O\{\frac{1}{n} \cdot \iint_{D} I_{5} \cdot dx_{1} \cdot dx_{2}\}$$
(10)

with obvious meaning for I, I, I, I and I.

3. All the integrals that appear in (10) are of a type studied by Dirichlet and Liouville. The corresponding formula of evaluation can be consulted in [3]; the proof is given in [4]; the explicit calculation for this case was performed in [1].

Finally, we have the following result:

$$\iint_{D} (I_{1} - I_{2}) \cdot dx_{1} \cdot dx_{2} = c_{K} \cdot \int_{2}^{K} (t^{3/K-1} - (t-1)^{1/K} \cdot t^{2/K-1}) dt, \quad (11)$$

where $c_{k} = \frac{\Gamma^{2}(1 + 1/k)}{\Gamma(2/k)};$

$$\iint_{D} I_{3}. dx_{i}. dx_{2} = k. c_{k}. \int_{2^{i}/k}^{2^{k}} t. \sin(2n\pi t). dt, \qquad (12)$$

$$\int_{D}^{L} I_{4} dx_{1} dx_{2} = k.c_{k}.\int_{2/k}^{z_{0}} (t^{k} + 1)^{2/k-1} t^{k-1} . \sin(2n\pi t) . dt, \qquad (13)$$

$$\iint_{D} \frac{dx_{1} \cdot dx_{2}}{\sqrt[K]{\frac{k}{x_{1}^{k} + x_{2}^{k}}}} = k.c_{k}.(z_{0} - 2^{1/k}).$$
 (14)

Replacing the preceding result in (9) we find the formula:

$$S_{K}(z_{0}) + S_{K}(z_{0}) = c_{K} \int_{2}^{K} \{t^{3/K-1} - (t-1)^{1/K} \cdot t^{2/K-1}\} dt$$

$$+ \sum_{n=1}^{N} \frac{k \cdot c_{K}}{n\pi} \cdot \int_{2}^{K} \{t - (t^{K} + 1)^{2/K-1} \cdot t^{K-1}\} \cdot \sin(2n\pi t) \cdot dt$$

$$+ O\{\frac{k \cdot c_{K}}{N} \cdot (z_{0} - 2^{1/K})\}$$
(15)

=
$$c_{K} \cdot T_{O} + \frac{K \cdot c_{K}}{\pi} \cdot \sum_{n=1}^{N} \frac{T_{n}}{n} + O(\frac{K \cdot c_{K}}{N} \cdot (z_{O} - 2^{1/K}))$$
say.

4. The binomial series expansion of the integrand in T (for |t| > 0

 and subsequent integration (permissible by uniform convergence) gives readily:

$$c_{K}, T_{O} = \frac{c_{K}}{\kappa^{-}}, \int_{2}^{Z_{O}} \{t^{3/K-2} + O(t^{3/K-3})\} dt$$

$$= \begin{cases} \frac{c_{K}}{3 - K}, (z_{O}^{3-K} - 2^{3/K-1}) + O(z_{O}^{2-K}), & \text{if } K \neq 3 \\ \frac{c_{3}}{3}, (\log z_{O}^{3} - \log 2^{3}) + O(\frac{1}{2}), & \text{if } K = 3 \end{cases}$$
(16)

So that we have, for large values of z:

$$c_{k} \cdot T_{0} = \begin{cases} c_{2} \cdot z_{0} + O(1), & \text{if } k = 2 \\ c_{3} \cdot \log z_{0} + O(1), & \text{if } k = 3 \\ \frac{c_{k}}{(k - 3) \cdot 2} + O(1), & \text{if } k \ge 4. \end{cases}$$
(17)

5. As regards the terms T, we have that the function n

$$f(t) = t - (t + 1)^{2/k-1} \cdot t$$
 (18)

when expanded by the binomial theorem for |t| > 1 can be expressed as:

$$f(t) = -(1 - \frac{2}{k}) \cdot \frac{1}{1! \cdot t} + (1 - \frac{2}{k}) \cdot (2 - \frac{2}{k}) \cdot \frac{1}{2! \cdot t} - \dots$$
 (19)

from which follows that f(t) and all its derivatives are decreasing functions of t in the interval of integration.

Integration by parts of the T gives:

$$T_{n} = \int_{2^{1}/K}^{Z_{0}} \{t - (t^{K} + 1)^{2/K-1}, t^{K-1}\}, \sin(2n\pi t) dt$$

$$= \int_{2^{1}/K}^{Z_{0}} f(t), \sin(2n\pi t) dt$$

$$= \cos(2n\pi t) + \sum_{k=0}^{Z_{0}} \int_{0}^{Z_{0}} dt dt$$
(20)

$$= -\left| f(t) \cdot \frac{\cos(2n\pi t)}{2n\pi} \right|_{2}^{20} + \frac{1}{2n\pi} \cdot \int_{2}^{20} f'(t) \cdot \cos(2n\pi t) dt$$

$$-\left|f(t).\frac{\cos(2n\pi t)}{2n\pi}\right|_{2^{1/K}}^{Z_{O}} = f(2^{1/K}).\frac{\cos(2n\pi 2^{1/K})}{2n\pi} - f(Z_{O}).\frac{\cos(2n\pi Z_{O})}{2n\pi}$$
(21)

From (18) we deduce

$$f(2^{1/K}) = 2^{1/K}.\{1 - \frac{2^{1-1/K}}{3^{1-2/K}}\} = O_K(1)$$
 (22)

because, as $k \rightarrow \infty$, $f(2) \rightarrow 1/3$.

From (19) we deduce:

$$f(z_0) = O_{K}(\frac{1}{z_0 k}).$$

Hence the expression in (21) has the order of magnitude

$$\frac{1}{n} \cdot O_{K}(1)$$
 (23)

Besides, we have in (20)

$$\left| \int_{2^{1}/K}^{z_{0}} f'(t) \cdot \cos(2n\pi t) dt \right| < \left| \int_{2^{1}/K}^{z_{0}} f'(t) dt \right| = \left| f(t) \right|_{2^{1}/K}^{z_{0}} \le f(2^{1/K})$$
 (24)

with $f(2^{1/K})$ gives by (22).

Replacing (21) and (24) in (20) we obtain:

$$T_{n} = \int_{1/K}^{z_{0}} \{t - (t^{K} + i)^{2/K-1}, t^{K-1}\} \cdot \sin(2n\pi t) dt = \frac{1}{n} \cdot O_{K}(1).$$
 (25)

6. We return now to (15). On account of the former calculation, we can make there N \rightarrow ∞ , in order to get:

$$S_{k}(z) + S_{k}(z) = c_{k}T + k.c.O(1).\sum_{n=1}^{\infty} 1/n^{2} = c.T + d.O(1)$$

$$\begin{cases}
c \cdot z + O(1) + d \cdot O(1), & \text{if } k = 2 \\
c \cdot \log z + O(1) + d \cdot O(1), & \text{if } k = 3 \\
c \cdot \log z + O(1) + d \cdot O(1), & \text{if } k = 3
\end{cases} (26)$$

$$(d_{K} = \frac{\pi^{2}}{6}, K, c_{K}).$$

In the case K = 3, it is known that S(z) = 0, so we can write

$$S*(z) = c.log z + O(1)$$

deducing thus that the equation x + x = z + 1 has on infinitude of solutions.

In the case $K \ge 4$, follows from (26) that both equations have a

finite quantity of solutions.

But in the case of the Fermat equation, it is obvious that the existence of only a (primitive) solutions, implies the existence of infinitely (imprimitive) many others.

Hence, if we conclude that for $k \ge 4$ it has only a finite quantity of solutions, we must conclude also that there are not solutions at all.

The method was extended in [2] to Euler's equation $\begin{array}{c} k \\ k \\ 1 \end{array}$

k k κ = z where it is proved the abscense of solutions for $m \leq k-2$.

In [6] the method is applies to the equation x + y = z proving that when 1/a + 1/b + 1/c < 1 there are not solutions.

In [7] is considered the case of the equation $x - h \cdot q = z$, related to congruent numbers h; and still there is the possibility to apply the method to many other Diophantine equation.

REFERENCES:

- [1] Peretti A., The Fermat equation (II), Bull. Number Theory, Vol XII (1988), 39-55.
- [2] Landau E., Vorlesungen uber Zahlentheorie, VII Teil, Kap. 3, s 59, Chelasa edition.
- [3] Gradshteyn I., Ryzhik I., Table of integrals, series and products, Academic Press formula 4.6.35.2, 1965, p. 621.
- [4] Nielsen N., Handbuch der Gammafunction, Kap. XII, § 67, 165-166.
- [5] Peretti A., Euler's Diophantine equation, Bull. Number Theory, Vol. XIII (1989), 39-50.
- [6] Peretti A., The Diophantine equation x + y = z, Bull. Number Theory, Vol. XIV (1990), 25-35.
- [7] Peretti A., About congruent numbers, Bull. Number Theory, Vol. XIII (1989), 105-123.