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THE FERMAT BEQUATION (III)
Aldo Peretti

Universidad del Salvador, Buenosg Alirez, ARGENTINA

ABSTRACT: On the basis of a former paper [1]1, the author presents
a simplified analytical way in order to determine the number of

solutiong of the Diophantine eguation of the title.

Az wag shown in {1}, we have that (n is a natural number)
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¢, otherwise

where [u}l denotes the greatest integer function.
Hence, the graph of PF({x) consists of segments of length 1 and

K K
height 1 compriged between the points ¥ - n and ¥ - n + 4 haszs

K K
the value 1/2 at ¥ = n oY T = n + 1; and vanishes at all other

points.

It follows that if we form:
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then we have:
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O, otherwise
from which we derive the twin formulas:
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where S (z )} is the number of solutions of the equation ¥ + X =
K 0 i 1 2

K K
7z for z ¢ 7 ; anad Sx{z ) is the same thinh for the eguation x +
0 kK © |
K K K K K
® : Z + 4 {the zolution Xi + xa = 7 heing counted ag different
2
K K K
from X + X = 72 Y.
2 4

2. The calculation of the number of solutions through formula (4}
presents unsurmontable difficulties; in change, the way using for-
mula (5) turnsg out to be eccessible.

The familiar development of the saw-tooth function

o sSin{2nux)}

Izl - 2 + /2 = b {5)
nzi nmn
when written as
fx + 0} + [x - 0} o sSin{2nix)
= X - 4/2 & 7  — {73
2 n=1 nm

iz valid for all real values of %, including the points of discon-
tinuity.
Taking account of what is stated in {2}, formula (7) can be al-

so written as

[z + 0} + [x - 0} N s=sin{Znnx) 4
- % - 4/2 + § @ —t 0. (&)
2 n=4 nw N.x
k/ k &/ K K
We replace now in (8) x by ¥  + ® and ¥ + x - 41; put the
i 2 1 el
regulting expreszsgionsg i {2}y and (%), and =20 wes obtain:
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Here D dencotes the region 2 £ ¥ + X < =z
2] 2 O

How, according to elementary textbooks, we have that the inte-
gral of a finite sum is egual to the sum of the integrals of the

indgividual terms, s=so that we can write:
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with obvious meaning for I , I , I , 1 and I
i 2 3 L B

3. All the integrals that appear in {10} are of a type studied by
Dirichlet and Liouville. The corresponding formula of evaluation
can be consulted in [3}; the proof is given in [41; the explicit
calculation for this case was performed in [41].

Finally, we have the following result:

K
0 I/K-14 t /K 2/K-1
(I, - I ).dx .dx_ = ¢ . {t - {(t - 1) . ydt,  {(11)
i 1 2 1 2 L

2
Fo(t + 1/K)

where ¢, = ;
K F{2/K)
F,K
f( I dx . aAx K qu t.8in{2nwt). 4dt {12)
QX A = + L. s B 3 23
3 4 2 14 1 /K
D Fad
, K
“0 kK 2/k-1 K-t |
I .dx .dx_ = K.c_ . (£ + 1) .t .sin{2nwt). dt, {13)
4 4 2 K 1 /K
2
dxi.dxa { /K
K
ff = K.c, .(z_ - 2 ). (14)
K ¢}
D} K K
X o+ X
4 2
Replacing the preceding result in (9) we find the formula:
ql*;
“0 3/k-1 t/k  2/K-1
a Z + S¥{z = . t .- .t yat
1«;( O) K( O) ('kf { Lt oL k rdt
2
K
N % %o K 2/K-1 _K-1
+ —_— T - T 1 o i }. si . !
nzfi g ai/K{ { + ) y.sin{2nnrt). dt {415)
K. ¢
+ Of K {(Z Bi/K)‘
J.IO ¥
K % Tn R'~k 1/K
g @ T : —_— ) z - 2
K "o 7 n%t n = (3 ’
say

4, The binomial series expansion of the integrand in T {for 1t} >
O
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So that we have, for large values of 7z ¢
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2 O
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5, Az regards the terms T , we have that the function
n
K 2/kK-1 k-1
F{t}y = t - (%t + 1) s & (18)

when expanded by the binomial theorem for {t} > 1 can be expressed
as:
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£(t) = -{4 - -). fo(4 - Y. (2 - o) —
K K K k 2K

11t 21.t

= s {19)

from which follows that £(t) and all its derivatives are decreas-
ing functions of t in the interval of integration.

Integration by parts of the T gives:
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From (1&) we deduce
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because, as kK -> o, f(2 _ Yy -> 4/3.

From (19) we deduce:
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Hence the expression in (21} has the order of magnitude

-.0 {1} {23}
n K
Besides, we have in (20)
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with f{(2 } gives by (22).
Replacing (21) and (24) in (20) we obtain:
Z
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&. We return now to (15). On account of the former calculation, we

can make there N -> o, in order to get:
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(¢ = --.K.c_ ).
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In the case of K = 2, it is known that both S {Z )} and Sx{z )
K 0 K 0
are increasing functions of 7 .
O
In the case K = 3, it is Known that & {z } = 0, so we can write
kK ©
Sx(z ) = ¢ .log =z + O(1)
X 0 3 O
3 3 3
deducing thus that the eguation ¥ + % = 7  + 4 has on infinitude
4 Z

of solutions.

In the case K » 4, follows from {(26) that both eguations have a
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finité guantity of soclutions.

But in ithe case of the Fermat eguation, it is obvious that the
existence of only a {(primitive)} =olutions, implies the existence
of infinitely (imprimitive)} many others.

Hence, if we conclude that for K » 4 it has only a finite quan-
tity of solutions, we must conclilude also that there are not =zolu-
tions at all,

The method was extended in [2]} to Buler’sz eguation xT T

K K
® =z where it iz proved the abscense of szolutions for m ¢ k-2,

a b C
In {6] the method is applies to the eguation x + Yy = Z proving

that when 4/a + {/b + i1/¢ < 41 there are not solutions.

4 2 4 2
In {7} is considered the case of the eguation x - h .g = =z

related to congruent numbers h; and still there is the pPossibility

to apply the method to many other Diophantine eguation.
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