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Abstract

A technique akin to Polya’s counting method, is proposed for computing the dis-
tribution of the distances between vertices in semiregular spherical polytopes.

1 Introduction

Semiregular spherical polytopes were first introduced by A. Boole Stot [1] as geomet-
ric bodies derived from and preserving the symmetry group of regular polytopes in n-
dimensional spaces. A complete classification for these objects was obtained by P.H.
Schoute [5] along with a description of numerous combinatorial properties. D. Slepian [7]
resorted to semiregular polytopes in designing sets of signals, called permutation modula-
tion codes, for sending information over noisy channels.

A permutational semiregular polytope is the convex-hull of a finite set X = {X M, of
n-dimensional vectors generated by all the possible permutations of the entries in a given
vector

Xe = (a,a1, ... a1, ag,ay ... a2, ... ,a4r,Qp, ... @)

| — my — | — me — | ... | — my — |

(1)

where

B
ij:n with m; >1 j=1,...,r .
i=t

Entries in X, will be taken in the arithmetical sequence a; = a; + (j — 1) to achieve the
maximum of the minimum Euclidean distance, [3], with

1
ap=—=> (j—-1)m;
n o

*An earlier version of this paper was presented at Third SIAM Conference on discrete Mathematics,
Clemson University, South Carolina, USA, 1986
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to yield the zero first-order moment

7
Z ajmj =0
i=1

This last equation shows that every code vector belongs to a hyperplane orthogonal to
the all-1’s vector, thus the actual dimension of the vector space spanned by & is n — 1.
Moreover, any vector in X' can be obtained by operating on X, with a matrix of the
natural representation of S,, the symmetric group of permutations over n objects. In
Slepian’s view, X" is an (n — 1)-dimensional group code [6].

Before stating the problem, let us recall some properties of the symmetric group S, over
n objects. Throughout the paper, we will use the term standard partition to refer to a
partition like (1) of the entries in a vector X.

1.1 The symmetric group S, and codes

We write 7(X.) or X, for the vector obtained by re-ordering entries in X, according to

the permutation
_ 1 2 con T
T\ (1) w2 ... w(n)

The symmetric group S, acts transitively on X'. Given any pair of vectors X, and X,,
the permutation ¢ = n7~1 sends X, in X,, that is

o(Xr) = o(m(Xe)) = n(Xe) = X, .
A pair of code vectors, X, = (Zg(1),--+>To(n)) and X; = (2r(1);---,T7(n)), has integer
Euclidean square-distance

n

1Xo — X: 2 = [2o) — @ ()]

=1
because z,(;) — T,(;) = a; — ag = j — £ for some j and L.
The subgroup H = {0 : o0(X.) =X, , 0 € §;,} of §,, leaves X, invariant. H is composed
of permutations that exchange equal entries, and its order is

T
M| = [[ m!
=1

The left transversal 7 (i.e. the set of left coset leaders) of H in S, generates X' without
repetitions because of the decomposition in cosets

So=™ and THNoH=0 if r#0
T€T
Therefore a Lagrange theorem, [4, p.33], gives
1Sy _ n!
H L

=1

X =1T| =
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1.2 The problem

Our objective is to count the number of points at a fixed distance from a given point X,.
More formally, the problem is to evaluate the cardinality of the vector set C(x) at the same
square distance x from X,. In view of the transitive action of S,, over X', the distance
distribution |C(x)| does not depend on o, hence, for counting purposes, we will refer to
X,. Distance  is an integer not greater than, let us say K. In general, it is not easy to
express K explicitly in terms of m;’s, but if the following ordering holds

my <my <mg <My < ... <My SMypip; <My <.t

we have
T

K=Y 12— (r+2)][2i— (v + 1)]m;

=1

The counting procedure for |C(k)| will be achieved in successive stages. First, we shall
consider a partition, induced by H, of 7 into subsets 7(7). Secondly, we shall show that
each 7(7) uniquely identifies a monomial in many variables which are indexed by the
cycles of S,. Then we shall explain how to compute |7(7)| from the monomial. Finally, a
generating function will be given for the sum of monomials associated to a fixed distance .
In order to describe this program in detail, the paper is organized as follows: in Section 2
we collect general properties and results on permutation groups and related codes; Section
3 describes the counting; lastly, in Section 4 we comment on the proposed method and
give some illustrative examples.

2 Cycles in S,

A permutation v of £ symbols v;, is called a cycle of length £, if each v; is substituted by
the next symbol v;41 and v, by v;. It is also denoted

v= (?.71,’02, ""vf) V; € Zn (2)
and in this notation any cyclically shifted writing is actually the same permutation, i.e.
l/:(’l)l+t,1)2+t,...,’l}[,’l)1,...,’Ut) 1 St<£

Theorem 1 FEvery permutation © € S, can be decomposed into disjoint cycles consisting
of totally different integers, [4, p.25]:

T =WnNnvy...Vg (3)

Distinct cycles commute.

Now, we consider a many-to-one map f from the set Z, = {1,2,...,n} onto the set
Z, ={1,2,...,7}, r < n, defined as

f(k) =h  if the k-th entry of X, is equal to aj
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Using f we define a map F' that sends a cycle v € §,, of length £ into an element of /o

F(V) = (f(vl)v f(UZ)v seey f(vf))

With reference to (3), we extend F' to every permutation 7 € S,,, by setting
F(r) = F(r)F(vg)...F(vs)

Note that the order of cycle images in this decomposition is irrelevant. The motivation
behind the definition of F' is to give a description of X' which overcomes the multiple
correspondence between group elements and code vectors.

2.1 Permutation weight

The distance between vectors in X' can be expressed through the Euclidean weight of a
permutation.

Definition 1 The Fuclidean weight of a cycle v is defined to be

¢
w(v) = Z[f(viﬂ) . f(vi)]2 Vo1 =01

and, in view of (3), the weight of a permutation T is defined to be

B

w(r) =Y w(v)

1=1
From the definition of f we have:

L £ 4

X = Xel? = Y o000 — 20,1 = D _{ar+ f(vj41) =l + f(0)]}* = 3 [f(vj41) = f(05)])°

i=1 =1 =1

then, the square distance between the image X,, of a cycle v; = (vq,v2,...,v¢) and X, is
equal to the weight of the cycle. Since different cycles v; operate on disjoint sets of entries
in X,, the square distance between X, and X, is the weight w(7). Moreover, writing

4

£ £
Xy, = Xel? = D [f(vj41) = F(0)) = 22 Flui)? =23 f(vi1) f(v;)

j=1 §=1

we see that the square distance is an even integer.

2.2 The transversal 7

Peculiar properties of the elements of 7 essential to our counting are expressed by the
following two theorems.



Theorem 2 Let 7 € T be factored into disjoint cycles according to theorem 1:

™ =TTy e TS

Fach cycle of this decomposition can be taken not to exchange adjacent equal elements in
Xe. That is, fori=1,2,...,s each cycle (vi1, vig,... vij,...) fulfills the condition

f(vig) # f(vij4a) V5. (4)
ProoF. We can write a cycle (vy,vq,...,u,2,¥,v,...,v) as a product of the form
(V1,2 .oy Uy Y, U, ., 00) (2, Y) (5)

where (z,y) is a transposition. If f(z) = f(y), then (z,y) € H. Iterating a decomposition
like (5) as many times as necessary, we obtain 7 = 7;h;, with 7; satisfying condition (4)
and h; € H. Since, each 7; operates on disjoint set of integers, we may reorder the elements
to write

* *

* __%
T° =TT 0Ty = FilaTalis. ..75hs = 1179 . o . Tehi By . .. Iy = Th

where 7 has the claimed property. a

Theorem 3 Assume that every coset leader T € T is chosen to accomplish theorem 2. Let
v="_t1,...,t...,tj,...,te) (1 < j) be a cycle which F-image has f(t;) = f(t;) = u € Z,.
Therefore, there is an equivalent permutation U which is a product of separated cycles

P= {1 . .,tj_l)(tj,. cotety, ey tiog)
and such that X, = X;.

Proo¥F. For theorem 2 we can assume j # ¢ + 1 and write the cycle as
V= (tiyeeestiyeeyboyty, .., ticg)

Hence, the F-image has the form

F(0) = (ty ooy f(E5o1)y ooy F8), F(81), oy F(8im1))
which shows that the same effect is obtained by cyclic shifting two separated sets:

(s 00 f(tj—1)) and (m,..., f(e), f(t1)s.--, F(tiz1)) (6)
Therefore, instead of ¥ we may consider a permutation & factored into cyclic permutations

U=t ..,t—1)(tj,. . te, 1, ..oy tic1)

that operates over two sets of different integers, but giving X, = Xj. a

As a result, every cycle v; that appears in some 7 € 7 can have the F-image composed of
cycles of §,. Therefore, we shall assume henceforth that every 7 € 7 has the image

F(r)=C;Cj, ... Cip, (7)

where Cj;s are cycles, not necessarily distinct, of S,.
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2.3 T(1)

Let HX, denote the set of vectors produced by the action of H over X,. We define 7(7)
to be the subset of 7 that generates, without repetitions, HX,. It is worth noting that
every permutation in H exchanges only entries within the same subset of the standard
partition. Therefore, knowing the composition of any set of the standard partition of X,
is fundamental for computing the cardinality |7(7)].

Let ng;(7) be the number of elements filled in the j-th set ending up in the k-th set by 7,
then the composition of the j-th set is completely described by the set of integers

n; = (n15(7),n25(7), - - s mi—15(7), m3i(7), mj4(T)s - o5 (7)) (8)
where .
njj(r) =mj— Y ng(T)
k=1k#]
The full action of 7 is described by 7 vectors n; (j = 1,...,r) of dimension r, which we

call the composition set.

An example. Let r = 3, the composition set for the monomial a(12)a(23) is the set of
three vectors

n, = (ml - 1,1, 0)

ny, = (1, mo — 2, 1)

nz = (0, 1, m3 — 1)

The sets 7(7) has the following interesting properties:
Proposition 1 .

1. T(t)=HTHNT
T(r)NT(o)=0 Vod¢T(r)

All permutations in T(7) have the same composition set as T

e e

If ' # 17 € T(7) then, an h € H exits such that ' = hth™' and both T and 7' have
the same cyclic structure.

PRrOOF. 1)From h(7(X.) = hTh/(X,) for any h,h’ € H it follows that the action of HTH
on X, is same as the action of 7 (7). Moreover, each 7 € 7 identifies a single element of
X, therefore HTH N 7 must generate HX, without repetitions.

2) It is a trivial consequence of the definition.

3) Since the permutations in H exchange only entries within the same subset of the
standard partition, then it does not alter the composition set.

4) Let be 7,7’ € 7(7), assume X, # X, then an h € H exits such that A(X,) = X, and

hMX;) = hr(Xe) = hth™1(X.) = 7'(Xe) a
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Due to this proposition, if we disregard the order of the cycles in (7), all permutations in
7(7) have the same F-image as 7. Hence, introducing a set of commuting variables a(C})
indexed by the cycles of S,, we can associate a unique monomial to 7(7):

Q
A(T (7)) = [T a(Ci)* (9)
=1

where (3; is the multiplicity, possibly zero, of C'; and 2 is the number of distinct cycles in
S,. The number
9=2(j—1)!(§) (10)
J=2

is obtained, observing that each one of the ; combinations of 7 out of r distinct

numbers from Z, corresponds to (j — 1)! cycles because by fixing the first element in a
given combination, each permutation of the other elements gives a different cycle.
In conclusion, denoting with w(7(7)) the common weight w(7) of any element of 7(7),

we have
Q

w(T(1)) =Y w(C;)B;

7=1
3 Counting

The number of points at distance x from X, is obtained from the decomposition

C(k)={X,;: 7€7T and w(r) =k} = U {X,: c€T(7)}
w(T(7))=k

implied by proposition 1. Since |7(7)| = {X,: o € T7(7)}|, we have

Cl=" > |T()l

w(7T(7))=k

The action of H over X, produces |7 (7)| distinct vectors, therefore using the composition
set for 7 we get
u m;!
17(n) =11 2 (11)
=ngi(r)t I n(7)!

k=1,k#j

with the understanding that (1/(n;;(7))!) = 0 if n;;(7) = —1 because, we cannot move
more than m; elements of the j-th set.

The number ng;(7) in (8) can be mechanically computed from A(7 (7)) through the func-
tions 0x;(C;), defined as follows:

o~ _ ) 1 if jis next to k in cycle C;
8i;(Ci) = { 0 otherwise
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for every j,k =1,2,... . Hence, from (7) and (9) we compute the numbers ny;(7) as
Q
nki (1) = Bibr; (Cy) J£k (12)
1=1

3.1 Generating function

A generating function G(2) can be produced for polynomials B, which are sum of mono-
mials A(7 (7)) with w(7(7)) = k, Vk. Recalling that if a(C;) is associated to weight
w(C;) then a(C;)* is associated to weight Aw(C;), hence the generating function for all
monomials associated to a cycle C; € S, is defined as

1
_ N\ 2w(Ci) )2 4w(CH) )3 6w (C:) —
Goi(e) = 1+ a(C)z™ ™ + o) a™ + oG + . = T e e

Moreover the correspondence
a(Ci)Pa(C))P = Biw(Ci) + Bjw(Cy)

implies that G(z), defined as product of cycle generating functions, is the generating
function for the sum of monomials which yield to the same distance &:

Q Q 1 [e%s] ;
G(z) = [IIGCi(w) = ]_:_[1 1— a(Ci):L'“’(Ci) = Z Biz

k=0

Once By is explicitly obtained, by means of (11) and (12), we compute:

r m;!

cwl= Y II 2
Y ATE)=Bxi= (1) [ nag(r)!

k=1,k#j

where the summation is extended to all monomials which sum up to B.

4 Conclusions

In this paper we have described a method for counting the number of vertices at fixed
Euclidean distance from a given vertex, in semiregular spherical polytopes. The proposed
counting procedure is reminiscent of Polya’s counting theory [2] although is far less gen-
eral because it exploits peculiar properties of the natural permutation representation of
S,.. Lastly, even if some results can be obtained by direct counting, the machinery pro-
posed makes all computations straightforward and automatic. In conclusion, we give three
illustrative examples.



Example 1 - Let us consider » = 2 and assume m; < mso. Then Q = 1 and we have
only one reduced cycle C = (1,2) with weight w(C') = 1. The generating function turns
out to be

1 [e.e]
G A 12 k 2k
(@)= 12 a(12)2? ,;“( )'w
From (12) and (11), we get
m1! mg!
IC2k)| = 4 k=0,1,2,...,m

(m1 - k)' k'(mz - k‘)'

and
|C(2k)| =0 k>m

The number of vertices at minimum square-distance 2 from X, is |C(2)| = myms.

Example 2 - Let us consider » = 3 and assume my < mg < moq, then = 5 and the
generating function is given by the following product

1 1 1 1 1
1-a(12)2%21 —a(23)z%21 - a(31)z%1 — a(123)z6 1 — a(132)z"

G(z) =

1+ [a(12) + a(23)]2? + [a(12)? + a(23)? + a(iQ)a(Q:s) + a(13)]2z*+

[@(123) + a(132) + a(12)a(13) + a(13)a(23) + a(12)? + a(23)3]2® + ...

From (12) and (11), we get for the smallest three distances

IC(2)] = mama+ mams
C@)| = mams -+ my(my — 1) )Img(m:a ) 4 mym]
my(my — 1)(my — 2) + mg(mg — 1)(mg — 2
CO)] = ma(my — 1)(m; - 2) 4 Tl Lm = 2) & ma(ims = 1)(mo — 2)
+ m1m2m3(m1+m3)
Example 3 - Let us consider the evaluation of the number of vertices at minimum

distance. The coefficient of interest is B,. We have
r—1 [o=3
Gz)=1+ Z a(i,i+ 1)3:2 + Z ngx%
=1 k=2

From (12) and (11), we get

r—1
C(2) = Y mimita
=1
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