A Note on the Distribution of Vertex Distances in Semiregular Polytopes *

Michele Elia Dipartimento di Elettronica - Politecnico di Torino I - 10129 Torino - Italy

Abstract

A technique akin to Polya's counting method, is proposed for computing the distribution of the distances between vertices in semiregular spherical polytopes.

1 Introduction

Semiregular spherical polytopes were first introduced by A. Boole Stot [1] as geometric bodies derived from and preserving the symmetry group of regular polytopes in n-dimensional spaces. A complete classification for these objects was obtained by P.H. Schoute [5] along with a description of numerous combinatorial properties. D. Slepian [7] resorted to semiregular polytopes in designing sets of signals, called permutation modulation codes, for sending information over noisy channels.

A permutational semiregular polytope is the convex-hull of a finite set $\mathcal{X} = \{X_i\}_{i=1}^M$ of n-dimensional vectors generated by all the possible permutations of the entries in a given vector

$$\mathbf{X}_{e} = (a_{1}, a_{1}, \dots, a_{1}, a_{2}, a_{2} \dots, a_{2}, \dots, a_{r}, a_{r}, \dots a_{r}) \\ | \longleftarrow m_{1} \longrightarrow | \longleftarrow m_{2} \longrightarrow | \dots | \longleftarrow m_{r} \longrightarrow |$$
 (1)

where

$$\sum_{j=1}^{r} m_j = n \quad \text{with} \quad m_j \ge 1 \quad j = 1, \dots, r .$$

Entries in X_e will be taken in the arithmetical sequence $a_j = a_1 + (j-1)$ to achieve the maximum of the minimum Euclidean distance, [3], with

$$a_1 = -\frac{1}{n} \sum_{j=1}^{r} (j-1)m_j$$

^{*}An earlier version of this paper was presented at Third SIAM Conference on discrete Mathematics, Clemson University, South Carolina, USA, 1986

to yield the zero first-order moment

$$\sum_{i=1}^r a_j m_j = 0$$

This last equation shows that every code vector belongs to a hyperplane orthogonal to the all-1's vector, thus the actual dimension of the vector space spanned by \mathcal{X} is n-1. Moreover, any vector in \mathcal{X} can be obtained by operating on \mathbf{X}_e with a matrix of the natural representation of \mathcal{S}_n , the symmetric group of permutations over n objects. In Slepian's view, \mathcal{X} is an (n-1)-dimensional group code [6].

Before stating the problem, let us recall some properties of the symmetric group S_n over n objects. Throughout the paper, we will use the term *standard partition* to refer to a partition like (1) of the entries in a vector X.

1.1 The symmetric group S_n and codes

We write $\pi(\mathbf{X}_e)$ or \mathbf{X}_{π} for the vector obtained by re-ordering entries in \mathbf{X}_e according to the permutation

$$\pi = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{array}\right)$$

The symmetric group S_n acts transitively on \mathcal{X} . Given any pair of vectors \mathbf{X}_{π} and \mathbf{X}_{η} , the permutation $\sigma = \eta \pi^{-1}$ sends \mathbf{X}_{π} in \mathbf{X}_{η} , that is

$$\sigma(\mathbf{X}_{\pi}) = \sigma(\pi(\mathbf{X}_e)) = \eta(\mathbf{X}_e) = \mathbf{X}_{\eta}$$
.

A pair of code vectors, $\mathbf{X}_{\sigma} = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$ and $\mathbf{X}_{\tau} = (x_{\tau(1)}, \dots, x_{\tau(n)})$, has integer Euclidean square-distance

$$|\mathbf{X}_{\sigma} - \mathbf{X}_{\tau}|^2 = \sum_{i=1}^{n} [x_{\sigma(i)} - x_{\tau(i)}]^2$$

because $x_{\sigma(i)} - x_{\tau(i)} = a_j - a_\ell = j - \ell$ for some j and ℓ .

The subgroup $\mathcal{H} = \{ \sigma : \sigma(\mathbf{X}_e) = \mathbf{X}_e , \sigma \in \mathcal{S}_n \}$ of \mathcal{S}_n leaves \mathbf{X}_e invariant. \mathcal{H} is composed of permutations that exchange equal entries, and its order is

$$|\mathcal{H}| = \prod_{i=1}^r m_i!$$

The left transversal \mathcal{T} (i.e. the set of left coset leaders) of \mathcal{H} in \mathcal{S}_n , generates \mathcal{X} without repetitions because of the decomposition in cosets

$$S_n = \bigcup_{\tau \in \mathcal{T}} \tau \mathcal{H}$$
 and $\tau \mathcal{H} \cap \sigma \mathcal{H} = \emptyset$ if $\tau \neq \sigma$

Therefore a Lagrange theorem, [4, p.33], gives

$$|\mathcal{X}| = |\mathcal{T}| = \frac{|\mathcal{S}_n|}{|\mathcal{H}|} = \frac{n!}{\prod_{i=1}^r m_i!}$$

1.2 The problem

Our objective is to count the number of points at a fixed distance from a given point \mathbf{X}_{σ} . More formally, the problem is to evaluate the cardinality of the vector set $\mathcal{C}(\kappa)$ at the same square distance κ from \mathbf{X}_{σ} . In view of the transitive action of \mathcal{S}_n over \mathcal{X} , the distance distribution $|\mathcal{C}(\kappa)|$ does not depend on σ , hence, for counting purposes, we will refer to \mathbf{X}_e . Distance κ is an integer not greater than, let us say K. In general, it is not easy to express K explicitly in terms of m_i 's, but if the following ordering holds

$$m_1 \le m_r \le m_2 \le m_{r-1} \le \ldots \le m_i \le m_{r-i+1} \le m_{i+1} \le \ldots$$

we have

$$K = \sum_{i=1}^{r} [2i - (r+2)][2i - (r+1)]m_i$$

The counting procedure for $|\mathcal{C}(\kappa)|$ will be achieved in successive stages. First, we shall consider a partition, induced by \mathcal{H} , of \mathcal{T} into subsets $\mathcal{T}(\tau)$. Secondly, we shall show that each $\mathcal{T}(\tau)$ uniquely identifies a monomial in many variables which are indexed by the cycles of \mathcal{S}_r . Then we shall explain how to compute $|\mathcal{T}(\tau)|$ from the monomial. Finally, a generating function will be given for the sum of monomials associated to a fixed distance κ . In order to describe this program in detail, the paper is organized as follows: in Section 2 we collect general properties and results on permutation groups and related codes; Section 3 describes the counting; lastly, in Section 4 we comment on the proposed method and give some illustrative examples.

2 Cycles in S_n

A permutation ν of ℓ symbols v_i , is called a cycle of length ℓ , if each v_i is substituted by the next symbol v_{i+1} and v_{ℓ} by v_1 . It is also denoted

$$\nu = (v_1, v_2, ..., v_\ell) \qquad v_i \in Z_n \tag{2}$$

and in this notation any cyclically shifted writing is actually the same permutation, i.e.

$$\nu = (v_{1+t}, v_{2+t}, ..., v_{\ell}, v_1, ..., v_t) \qquad 1 \le t < \ell$$

Theorem 1 Every permutation $\pi \in \mathcal{S}_n$ can be decomposed into disjoint cycles consisting of totally different integers, [4, p.25]:

$$\pi = \nu_1 \nu_2 \dots \nu_s \tag{3}$$

Distinct cycles commute.

Now, we consider a many-to-one map f from the set $\mathbb{Z}_n = \{1, 2, ..., n\}$ onto the set $\mathbb{Z}_r = \{1, 2, ..., r\}, r < n$, defined as

$$f(k) = h$$
 if the k-th entry of \mathbf{X}_e is equal to a_h .

Using f we define a map F that sends a cycle $\nu \in \mathcal{S}_n$ of length ℓ into an element of \mathbb{Z}_r^{ℓ}

$$F(\nu) = (f(v_1), f(v_2), ..., f(v_\ell))$$

With reference to (3), we extend F to every permutation $\pi \in \mathcal{S}_n$, by setting

$$F(\pi) = F(\nu_1)F(\nu_2)...F(\nu_s)$$

Note that the order of cycle images in this decomposition is irrelevant. The motivation behind the definition of F is to give a description of \mathcal{X} which overcomes the multiple correspondence between group elements and code vectors.

2.1 Permutation weight

The distance between vectors in \mathcal{X} can be expressed through the Euclidean weight of a permutation.

Definition 1 The Euclidean weight of a cycle ν is defined to be

$$w(\nu) = \sum_{i=1}^{\ell} [f(v_{i+1}) - f(v_i)]^2 \qquad v_{\ell+1} = v_1$$

and, in view of (3), the weight of a permutation τ is defined to be

$$w(\tau) = \sum_{i=1}^{s} w(\nu_i)$$

From the definition of f we have:

$$|\mathbf{X}_{\nu_i} - \mathbf{X}_e|^2 = \sum_{i=1}^{\ell} [x_{v_{j+1}} - x_{v_j}]^2 = \sum_{i=1}^{\ell} \{a_1 + f(v_{j+1}) - [a_1 + f(v_j)]\}^2 = \sum_{i=1}^{\ell} [f(v_{j+1}) - f(v_j)]^2$$

then, the square distance between the image \mathbf{X}_{ν_i} of a cycle $\nu_i = (v_1, v_2, ..., v_\ell)$ and \mathbf{X}_e is equal to the weight of the cycle. Since different cycles ν_i operate on disjoint sets of entries in \mathbf{X}_e , the square distance between \mathbf{X}_{τ} and \mathbf{X}_e is the weight $w(\tau)$. Moreover, writing

$$|\mathbf{X}_{\nu_i} - \mathbf{X}_e|^2 = \sum_{j=1}^{\ell} [f(v_{j+1}) - f(v_j)]^2 = 2\sum_{j=1}^{\ell} f(v_j)^2 - 2\sum_{j=1}^{\ell} f(v_{j+1})f(v_j)$$

we see that the square distance is an even integer.

2.2 The transversal T

Peculiar properties of the elements of \mathcal{T} essential to our counting are expressed by the following two theorems.

Theorem 2 Let $\tau^* \in \mathcal{T}$ be factored into disjoint cycles according to theorem 1:

$$\tau^* = \tau_1^* \tau_2^* \dots \tau_s^*$$

Each cycle of this decomposition can be taken not to exchange adjacent equal elements in \mathbf{X}_e . That is, for i = 1, 2, ..., s each cycle $(v_{i1}, v_{i2}, ..., v_{ij}, ...)$ fulfills the condition

$$f(v_{ij}) \neq f(v_{ij+1}) \quad \forall j \ . \tag{4}$$

PROOF. We can write a cycle $(v_1, v_2, \ldots, u, x, y, v, \ldots, v_\ell)$ as a product of the form

$$(v_1, v_2, \dots, u, y, v, \dots, v_\ell)(x, y) \tag{5}$$

where (x, y) is a transposition. If f(x) = f(y), then $(x, y) \in \mathcal{H}$. Iterating a decomposition like (5) as many times as necessary, we obtain $\tau_i^* = \tau_i h_i$, with τ_i satisfying condition (4) and $h_i \in \mathcal{H}$. Since, each τ_i operates on disjoint set of integers, we may reorder the elements to write

$$\tau^* = \tau_1^* \tau_2^* \dots \tau_s^* = \tau_1 h_1 \tau_2 h_2 \dots \tau_s h_s = \tau_1 \tau_2 \dots \tau_s h_1 h_2 \dots h_s = \tau h_s$$

where τ has the claimed property.

Theorem 3 Assume that every coset leader $\tau \in \mathcal{T}$ is chosen to accomplish theorem 2. Let $\nu = (t_1, \ldots, t_i, \ldots, t_j, \ldots, t_\ell)$ (i < j) be a cycle which F-image has $f(t_i) = f(t_j) = u \in \mathbb{Z}_r$. Therefore, there is an equivalent permutation $\tilde{\nu}$ which is a product of separated cycles

$$\tilde{\nu} = (t_i, \dots, t_{i-1})(t_i, \dots, t_{\ell}, t_1, \dots, t_{i-1})$$

and such that $\mathbf{X}_{\nu} = \mathbf{X}_{\tilde{\nu}}$.

PROOF. For theorem 2 we can assume $j \neq i+1$ and write the cycle as

$$\nu = (t_i, \dots, t_j, \dots, t_\ell, t_1, \dots, t_{i-1})$$

Hence, the F-image has the form

$$F(\nu) = (u, \dots, f(t_{i-1}), u, \dots, f(t_{\ell}), f(t_1), \dots, f(t_{i-1}))$$

which shows that the same effect is obtained by cyclic shifting two separated sets:

$$(u, \ldots, f(t_{i-1}))$$
 and $(u, \ldots, f(t_{\ell}), f(t_1), \ldots, f(t_{i-1}))$ (6)

Therefore, instead of ν we may consider a permutation $\tilde{\nu}$ factored into cyclic permutations

$$\tilde{\nu} = (t_i, \dots, t_{i-1})(t_i, \dots, t_{\ell}, t_1, \dots, t_{i-1})$$

that operates over two sets of different integers, but giving $X_{\nu} = X_{\tilde{\nu}}$.

As a result, every cycle ν_i that appears in some $\tau \in \mathcal{T}$ can have the F-image composed of cycles of \mathcal{S}_r . Therefore, we shall assume henceforth that every $\tau \in \mathcal{T}$ has the image

$$F(\tau) = C_{i_1} C_{i_2} \dots C_{i_m} \tag{7}$$

where C_{j_i} s are cycles, not necessarily distinct, of S_r .

2.3 $T(\tau)$

Let $\mathcal{H}\mathbf{X}_{\tau}$ denote the set of vectors produced by the action of \mathcal{H} over \mathbf{X}_{τ} . We define $\mathcal{T}(\tau)$ to be the subset of \mathcal{T} that generates, without repetitions, $\mathcal{H}\mathbf{X}_{\tau}$. It is worth noting that every permutation in \mathcal{H} exchanges only entries within the same subset of the standard partition. Therefore, knowing the composition of any set of the standard partition of \mathbf{X}_{τ} is fundamental for computing the cardinality $|\mathcal{T}(\tau)|$.

Let $n_{kj}(\tau)$ be the number of elements filled in the j-th set ending up in the k-th set by τ , then the composition of the j-th set is completely described by the set of integers

$$\mathbf{n}_{j} = (n_{1j}(\tau), n_{2j}(\tau), \dots, n_{j-1j}(\tau), n_{jj}(\tau), n_{j+1j}(\tau), \dots, n_{rj}(\tau))$$
(8)

where

$$n_{jj}(\tau) = m_j - \sum_{k=1, k \neq j}^r n_{kj}(\tau)$$

The full action of τ is described by r vectors \mathbf{n}_j $(j=1,\ldots,r)$ of dimension r, which we call the *composition set*.

An example. Let r = 3, the composition set for the monomial a(12)a(23) is the set of three vectors

$$\begin{cases} \mathbf{n_1} &= (m_1 - 1, 1, 0) \\ \mathbf{n_2} &= (1, m_2 - 2, 1) \\ \mathbf{n_3} &= (0, 1, m_3 - 1) \end{cases}$$

The sets $\mathcal{T}(\tau)$ has the following interesting properties:

Proposition 1.

- 1. $T(\tau) = \mathcal{H}\tau\mathcal{H} \cap T$
- 2. $T(\tau) \cap T(\sigma) = \emptyset$ $\forall \ \sigma \notin T(\tau)$
- 3. All permutations in $T(\tau)$ have the same composition set as τ
- 4. If $\tau' \neq \tau \in \mathcal{T}(\tau)$ then, an $h \in \mathcal{H}$ exits such that $\tau' = h\tau h^{-1}$ and both τ and τ' have the same cyclic structure.

PROOF. 1)From $h(\tau(\mathbf{X}_e) = h\tau h'(\mathbf{X}_e))$ for any $h, h' \in \mathcal{H}$ it follows that the action of $\mathcal{H}\tau\mathcal{H}$ on \mathbf{X}_e is same as the action of $\mathcal{T}(\tau)$. Moreover, each $\tau \in \mathcal{T}$ identifies a single element of \mathcal{X} , therefore $\mathcal{H}\tau\mathcal{H} \cap \mathcal{T}$ must generate $\mathcal{H}\mathbf{X}_{\tau}$ without repetitions.

- 2) It is a trivial consequence of the definition.
- 3) Since the permutations in \mathcal{H} exchange only entries within the same subset of the standard partition, then it does not alter the *composition set*.
- 4) Let be $\tau, \tau' \in \mathcal{T}(\tau)$, assume $\mathbf{X}_{\tau'} \neq \mathbf{X}_{\tau}$, then an $h \in \mathcal{H}$ exits such that $h(\mathbf{X}_{\tau}) = \mathbf{X}_{\tau'}$ and

$$h(\mathbf{X}_{\tau}) = h\tau(\mathbf{X}_e) = h\tau h^{-1}(\mathbf{X}_e) = \tau'(\mathbf{X}_e)$$

Due to this proposition, if we disregard the order of the cycles in (7), all permutations in $\mathcal{T}(\tau)$ have the same F-image as τ . Hence, introducing a set of commuting variables $a(C_i)$ indexed by the cycles of \mathcal{S}_r , we can associate a unique monomial to $\mathcal{T}(\tau)$:

$$A(\mathcal{T}(\tau)) = \prod_{i=1}^{\Omega} a(C_i)^{\beta_i}$$
(9)

where β_j is the multiplicity, possibly zero, of C_j and Ω is the number of distinct cycles in \mathcal{S}_r . The number

$$\Omega = \sum_{j=2}^{r} (j-1)! \begin{pmatrix} r \\ j \end{pmatrix}$$
 (10)

is obtained, observing that each one of the $\binom{r}{j}$ combinations of j out of r distinct numbers from \mathbb{Z}_r corresponds to (j-1)! cycles because by fixing the first element in a given combination, each permutation of the other elements gives a different cycle. In conclusion, denoting with $w(\mathcal{T}(\tau))$ the common weight $w(\tau)$ of any element of $\mathcal{T}(\tau)$, we have

$$w(\mathcal{T}(\tau)) = \sum_{j=1}^{\Omega} w(C_j)\beta_j$$

3 Counting

The number of points at distance κ from \mathbf{X}_e is obtained from the decomposition

$$\mathcal{C}(\kappa) = \{\mathbf{X}_{\tau}: \ \tau \in \mathcal{T} \ \text{and} \ w(\tau) = \kappa\} = \bigcup_{w(\mathcal{T}(\tau)) = \kappa} \{\mathbf{X}_{\sigma}: \ \sigma \in \mathcal{T}(\tau)\}$$

implied by proposition 1. Since $|\mathcal{T}(\tau)| = |\{\mathbf{X}_{\sigma}: \ \sigma \in \mathcal{T}(\tau)\}|$, we have

$$|\mathcal{C}(\kappa)| = \sum_{w(\mathcal{T}(\tau)) = \kappa} |\mathcal{T}(\tau)|$$

The action of \mathcal{H} over \mathbf{X}_{τ} produces $|\mathcal{T}(\tau)|$ distinct vectors, therefore using the composition set for τ we get

$$|\mathcal{T}(\tau)| = \prod_{j=1}^{r} \frac{m_j!}{n_{jj}(\tau)! \prod_{k=1, k \neq j}^{r} n_{kj}(\tau)!}$$
(11)

with the understanding that $(1/(n_{jj}(\tau))!) = 0$ if $n_{jj}(\tau) = -1$ because, we cannot move more than m_j elements of the j-th set.

The number $n_{kj}(\tau)$ in (8) can be mechanically computed from $A(\mathcal{T}(\tau))$ through the functions $\delta_{kj}(C_i)$, defined as follows:

$$\delta_{kj}(C_i) = \begin{cases}
1 & \text{if } j \text{ is next to } k \text{ in cycle} & C_i \\
0 & \text{otherwise}
\end{cases}$$
 $i = 1, 2, ..., \Omega$

for every j, k = 1, 2, ..., r. Hence, from (7) and (9) we compute the numbers $n_{kj}(\tau)$ as

$$n_{kj}(\tau) = \sum_{i=1}^{\Omega} \beta_i \delta_{kj}(C_i) \qquad j \neq k$$
 (12)

3.1 Generating function

A generating function G(x) can be produced for polynomials B_{κ} which are sum of monomials $A(\mathcal{T}(\tau))$ with $w(\mathcal{T}(\tau)) = \kappa$, $\forall \kappa$. Recalling that if $a(C_i)$ is associated to weight $w(C_i)$ then $a(C_i)^{\lambda}$ is associated to weight $\lambda w(C_i)$, hence the generating function for all monomials associated to a cycle $C_i \in \mathcal{S}_r$ is defined as

$$G_{C_i}(x) = 1 + a(C_i)x^{2w(C_i)} + a(C_i)^2x^{4w(C_i)} + a(C_i)^3x^{6w(C_i)} + \dots = \frac{1}{1 - a(C_i)x^{2w(C_i)}}$$

Moreover the correspondence

$$a(C_i)^{\beta_i}a(C_j)^{\beta_j} \Longrightarrow \beta_i w(C_i) + \beta_j w(C_j)$$

implies that G(x), defined as product of cycle generating functions, is the generating function for the sum of monomials which yield to the same distance κ :

$$G(x) = \prod_{i=1}^{\Omega} G_{C_i}(x) = \prod_{i=1}^{\Omega} \frac{1}{1 - a(C_i)x^{w(C_i)}} = \sum_{\kappa=0}^{\infty} B_{\kappa} x^{\kappa}$$

Once B_{κ} is explicitly obtained, by means of (11) and (12), we compute:

$$|\mathcal{C}(\kappa)| = \sum_{\sum A(\mathcal{T}(\tau)) = B_{\kappa}} \prod_{j=1}^{r} \frac{m_{j}!}{n_{jj}(\tau)! \prod_{k=1, k \neq j}^{r} n_{kj}(\tau)!}$$

where the summation is extended to all monomials which sum up to B_{κ} .

4 Conclusions

In this paper we have described a method for counting the number of vertices at fixed Euclidean distance from a given vertex, in semiregular spherical polytopes. The proposed counting procedure is reminiscent of Polya's counting theory [2] although is far less general because it exploits peculiar properties of the natural permutation representation of S_n . Lastly, even if some results can be obtained by direct counting, the machinery proposed makes all computations straightforward and automatic. In conclusion, we give three illustrative examples.

Example 1 - Let us consider r=2 and assume $m_1 \leq m_2$. Then $\Omega=1$ and we have only one reduced cycle C=(1,2) with weight w(C)=1. The generating function turns out to be

$$G(x) = \frac{1}{1 - a(12)x^2} = \sum_{k=0}^{\infty} a(12)^k x^{2k}$$

From (12) and (11), we get

$$|\mathcal{C}(2k)| = \frac{m_1!}{k!(m_1 - k)!} \frac{m_2!}{k!(m_2 - k)!}$$
 $k = 0, 1, 2, \dots, m_1$

and

$$|\mathcal{C}(2k)| = 0 \qquad k > m_1$$

The number of vertices at minimum square-distance 2 from \mathbf{X}_e is $|\mathcal{C}(2)| = m_1 m_2$.

Example 2 - Let us consider r=3 and assume $m_1 \leq m_3 \leq m_2$, then $\Omega=5$ and the generating function is given by the following product

$$G(x) = \frac{1}{1 - a(12)x^2} \frac{1}{1 - a(23)x^2} \frac{1}{1 - a(31)x^4} \frac{1}{1 - a(123)x^6} \frac{1}{1 - a(132)x^6}$$

$$= 1 + [a(12) + a(23)]x^2 + [a(12)^2 + a(23)^2 + a(12)a(23) + a(13)]x^4 +$$

$$[a(123) + a(132) + a(12)a(13) + a(13)a(23) + a(12)^3 + a(23)^3]x^6 + \dots$$

From (12) and (11), we get for the smallest three distances

$$|\mathcal{C}(2)| = m_1 m_2 + m_2 m_3$$

$$|\mathcal{C}(4)| = m_1 m_3 + m_2 (m_2 - 1) \left[\frac{m_1 (m_1 - 1) + m_3 (m_3 - 1)}{4} + m_1 m_3 \right]$$

$$|\mathcal{C}(6)| = m_2 (m_2 - 1) (m_2 - 2) + \frac{m_1 (m_1 - 1) (m_1 - 2) + m_3 (m_3 - 1) (m_3 - 2)}{6}$$

$$+ m_1 m_2 m_3 (m_1 + m_3)$$

Example 3 - Let us consider the evaluation of the number of vertices at minimum distance. The coefficient of interest is B_2 . We have

$$G(x) = 1 + \sum_{i=1}^{r-1} a(i, i+1)x^2 + \sum_{k=2}^{\infty} B_{2k}x^{2k}$$

From (12) and (11), we get

$$|\mathcal{C}(2)| = \sum_{i=1}^{r-1} m_i m_{i+1}$$

References

- [1] A. Boole Stot, Geometrical deduction of semiregular from regular polytopes, Ver.der Koninklijke Akad. Wetensch. Amsterdam (eerstie sectie), vol.11.1, 1910.
- [2] N.G. De Bruijn, Polya's Theory of Counting, in Applied Combinatorial Mathematics, Ed. E.F. Beckenbach, Wiley, New York, 1964, pp.144-236.
- [3] **T. Ericson**, Permutation Codes, *Rapport de Recherche INRIA*, Paris, n.2109, November 1993.
- [4] W. Ledermann, Introduction to group theory, Longman, London, 1973.
- [5] **P.H. Schoute**, Analytical treatment of the polytopes regularly derived from regular polytopes, *Ver.der Koninklijke Akad.van Wetenschappen te Amsterdam (eertie sectie)*, vol.11.5, 1913.
- [6] **D. Slepian**, Group codes for the Gaussian channel, BSTJ, vol.47 (1968), pp.575-602.
- [7] D. Slepian, Permutation Modulation, IEEE Proc., vol.53, pp.228-236, March 1965.