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SOMETHIRG HEW ABOUT g(K} IN WARING’'S PRCOEBLEM
Mladen V. Vassilev - Missana

5, V. Hugo Str., Sofia-i1i24, Bulgaria

As usually in Waring’'s problem, 1 denocte by gk} the smallest
number of non-negative integer K-th powers sufficient to represent
every positive integer.

Let x > ¢ e a real number. Further everywhere {Xx} means X -
{x}, where {x] dencotes the greatest integer, which is not greater

than x.

For an integer K > 1 1 define the numbers:

K K
3 K 2 K . 3 -1
B{K} 1= (=} ; G{K)} 'z =——: I(K) 1= 2 -2 + [B{K}}; T(K) 1z —mro0,
2 K K
e - i e - 1
A well-Known result (see [1}1} 1is
THEOREM i: Let K # 4. Then the ineguality
K K
2 . {E(K})} + [E(K}}] < 2 {1}
holds ittt g(K} = I {K}.
In [2] a very intereétjng hypothesis was proposed:.
HYPOTHESIS 1: If K > 3, then the equality
[E{(K}] = [G(K}] (2}

holds.
In the present paper 1 establish the important result:
THECREM 2: 1f Hypothesis 1 is true, then for every K Z4 4 and kK >
3, g(K} = I{(K).

For K » 3 1 need (when it is possible} the inegualtities:
4

{a) {G(K}} > = t
2 - 4

(b} T{K} > [G(K}],

{c) Ef{k) > [G(K}};

and the i1mportant condition
{d) T(K} is not integer.

The main result in the paper 1is
THEOREM 3: Let K » 3 be fixed. Then (2} holds 144 (i) and (d) hold

simaltanecusly.

OCf course, 1f (d) is independently proved, then (i) and (2) are
egquivalent to each other. HMoreover, in this case Hypothesis 1 1is
eguivalent to the following statement.

"For every K > 3 and K # 4, the inequality (1} holds. "

Theretore, it
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BYPOTHESIS 2. "For every K > 2 the number T({K) is not integer”

is proved, then Hypothesis 1 is eguivalent to the statement:
"For every K > 3 and X # 4, g(kK) = I(K}."

Theorems 4, 5, & in the paper give the Key to (2} ‘{i.e. to Hy-
pothesis 1}. Finally, an open problem connected with Hypothesis 2
is posed. |
LEMMA 1: If kK > 3, then G(K} is not an integer.

K
Proof: Let G{K) be an integer for some K > 3. The eguality 3 =
K K
G{K). {2 - 4} implies 3 = ¢ (mod G{K}}. Therefore, for some m €

m K
{6, ¢, 2, ..., K} it is satisfied 3 = 2 - 4. But this equati-

on has only the solutions: m = ¢, K = {1 and m = §, K = 2 (see [3])
which contradicts K » 3.
Further the answer to the gquestion: "when it is possible to ha-
ve [B{K}] # [G(K}]" is given.
THEOREM 4: Let K > 3 be fixed. Then the eguality (2) is not true
iff there exist three positive integers s, a, Db, such
K+i
that: []og3(2 - 4}1 < s ¢ K; a is o¢dd;, a < b, HCF (a,
by = 1, and the eguality
3 -2 .b - a
holds.
(Here and further HCF(a, b} means the highest common factor of a
and b.}
Proof: Under the conclusion of Lemma %, {2) is not true iff there

exists an integer L € (B{(K}, G(K}}. But a bijection between the

K
last open interval and (0, 1) exists. Therefore, L = «E———-. where
c - X
a .
X = - € {0, 1) is a rational number and HCF{(a, b} = 1. Hence
b
k K a
3 =2 L - -.L.
b
K-s
The last eguality yields L - 4.b and @ = 3 , where s € {C, 1%,
Kk K a
., K}. Therefore 3 = 2 b - a. Hence a is ocdd. Since - € {0, 1},
b

the ineguality a < b holds. Then the last equality implies

s K K K K K K+1
3 > 2 .{a + 1) - a - 2 + a. (2 - 1) 2 2 + 2 - 3= 2 - 4.

K+1 .
Therefore []0g3(2 - 1}} <'s ¢ K and the theorem is proved.

REMARK 4: 1t is easily seen that a =z 3 (mod 8}, or a = 7 {(mogd 8).
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In the first case s is o0dd, but in the second case it is even.

s s
3 -
For b the condition b € (—i. _E—_—_) is satisfieq.
2 2 - 1
35
Let me substitute a - b - t, t € {§, 2, ..., [-E}}' Using that
2
38 3S -t
b = {“ﬁ} + 4 and b - T 1 arrive to the following equivalent
bl 2 - 1

form of Theorem 4.
THECREM 5: Let K » 3 be fixed. Then the equality {2} holds iff for

K+1
every s, such that i+ []og3(2 - §}1 < s £ K, each
BS t '
number of the Kind A{(s, t} = fE———— is not integer when
2 - 1
3s s 35
t ¥: 2y 503 — and HCF({([—1] + 1, —_— + 1-t = 4
€4 lk}} ({K} [k} )
2 Fal 2 ‘
Now, let me substitute 1 - b-t., When t runs the set {t, 2, ...,
s s s
3 . 3 3 o+ 1
[_ﬁ}}' 1 runs the same cocne. Using that b - {_E} + § and b : —mm
Z bad c

I obtain another equivalent form of Theorem 4,

THEOREM 6: Let K > 3 be fixed. Then the equality {2} holds iff for
K+1

every s, such that {1 + []og3 {2 - 1}} ¢ s £ K, each
s
number of the Kind B{(s, 1)} = 3 ) is not integer when
e
LS s
I € {8, 2; i, {ii}}'and HCF([Eg] + 1, 1) = 4.
2 2

In order to prove Theorem 2 and Theorem 3, I need some prelimi-
nary results,

LEMMA 2: Let x, y, v, u be integers and the {first three of them be

positive. Let the reltations: Yy < X; v £ ¥Y - %, x = uay +

X + 4 b4
v, hold tooc. Then the ineguality {~—;——] < § heolds iff v

<y - 1.

X + 4 v + 1
Proof: The conditions of the Lemma imply - T nu o+ ——;——
v + 1 x + 1
1. Let v ¢ ¥y - 1. Then ¢ < - < 1. Therefore | 1 = u, But u
v X + 1 b4
< ua + -, 1i.e i 1 ¢ -,
b4 b4



X
2. Let v - ¥y - 1. Then: ; - u + i - 1 = u + 1. Hence

WA |
e
1K

X + 1

f

1. Therefore, the ineguality |

(o]
N
{

implies v ¢ v - #%.

The Lemma 1is proved.
LEMMA 3: Let K » 3 be fixed. Each one of {(a} and (b} is equivalent
to (4).
Proof: It is obvious that (a} and (b} are eguivalent to each other.
wWhat is necessary now is to prove the equivalence of (b} and {(4).
1. Let T{K) be integer. Then the inequality G(K} > T(K}) yields:
[G{k}) > [T(K}] = T(K}.
Therefore, (b} implies (4}. % ”
2. Let {(d) hold, 1 substitute x = 3 - &, y = 2 - &, and consider
the equality X = u.y + v, where u and v are integers,. The assump-
tion v = ¥y - 1 implies u - G(K)}, which contradicts Lemma 1. There-
fore, v ¢ y - 1. The assumption v = ¢ implies u = x/y = T(K}. But

the last equality contradicts (d). Therefore ¢ < v ¢ y-1 and Lemma
+ 4
b4
tutions coincides with (b).
The lemma is proved.
How, I am able to prove Theorem 3.
Procf of Theorem 3: After some elementary computations, {1} takes
the eguivalent form:

X
2 is applicable. Hence, |

X
1 < ;, which under the above substi-

K

2
tG(k}] - [B(K}] < = {G{K}}. (3}
2 - 1

i. Let me prove that (2) implies (i) and (4}.

If (2) holds, then to prove (3} (i.e., {(1})} it is enough to ve-

Ek
rify the inegquality {G(K)} s_—E————. The last one 1is c¢bvious, be-
2 - 1

cause the left-hand side is less, but the right-hand side 1is grea-
ter than 1. So, (2) implies (1}.

Since (2) holds Theorem & yvields T{(K} - A(K, 1} is not integer,
i.e., (2} implies (ad), too,.
2. Let me prove that (1) and (d) imply (2}.

First, I rewrite (1), using (3}, 1in the equivalent form

1
[G(K)]} - [E(K}] < & - ({G(K}} -

: 4
T ) (4)
2 - 1
I£ {d} holds, then {a) holds too (see Lemma 3). Therefore,
1
{({G(K}} - e — > O and (4) vields [G(kK}] - [B(K}] < 1.
e - 1
The last ineguality implies immediatelly: [G{(K}] = [E{(K}}, 1i.e.

(2). The Theorem is proved.
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It is clear that Theorem 2 is a corocllary of Theorem i1 and The-
orem 3,
REMARK 2: For a fixed K > 3, (2} is eguivalent to (c}.
The proof of this statement is obvious so it can be omitted.
A particular case of Hypothesis 2 is the following result.
THEOREM 7: I1f K is even then T(K} is not integer. If K > 1 1is odqg,
then T{k)} is not integer in each ¢f the cases: k = 3,
7, 9, 411, 15 (mod 16}.

K

K
Proof: 4. Let K be even. Then 2 - 1 ¢ {(mod 3}, but 3 - 1

i

i
1
[

({mod 3). Therefore, T{(K} is not integer.

2. Let K > 1 be odd and let K satisfy at least one of the congru-

ences: kK = 3, i i 9, 11, 15 (mod 16). In this case, EK - 1 = C
K
{moad T}, but it is impossible to have 3 - 4 = 0 {(mod 7). Hence
T{K} is not integer.
The Theorem is proved.
How, to prove Hypothesis 2 there only remains to solve the

following
OFEN PROBLEM: Let K > § be odd. Prove that T(K) is not integer in

each one of the cases K 1, 5, 13 {(mocd 16}.

i
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