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Abstract
This paper displays some old results in a new way and extends them in the context of
the modular ring Z¢. Various diophantine properties of an integer matrix modulo 6
are developed in a natural way from tables of the basic binary operations.

1. INTRODUCTION

We define here an integer matrix. This is defined naturally modulo 6 by 6r *i,
i=0,123,; r=0,1.2,... Various diophantine properties are considered for the
equivalence classes partitioned by Zg [1]:

1={4,1016,22,...}, 4={1,7,13]19,...},

2={511,17,23,...}, 5=1{28,14,20,...},
3=1{6,12,1824,...}, 6={39,1521,...}.

The elements of {1,2,3,4,5,6} are set out in Table 1 where they are defined in terms
of the natural number r which defines the rows of the matrix M. As is well known the
primes, p > 3, are defined in term of 6r 1, andsop e (2,4).

column 1 2 3 4 5 6
row, r 6r—-2 6r—1 6r 6r +1 6r+2 6r+3
0 1 2 3

1 4 5 6 7 8 9
2 10 11 12 13 14 15
3 16 17 18 19 20 21
4 22 23 24 25 26 27
5 28 29 30 31 32 33
6 34 35 36 5 7 38 39
7 40 41 42 43 44 45
8 46 47 48 49 50 51
9 52 53 54 55 56 57
10 58 59 60 61 62 63
11 64 65 66 67 68 69
12 70 71 72 73 74 75
13 76 77 78 79 80 81
14 82 83 84 85 86 87
15 88 89 90 91 92 93

Table 1




Similarly it is readily observed that 6/3 and 3[6; 2|1,3,5; 1

2,165, +5,.),

in which a, represents an element in the rth row of M. Similarly we note the basic
operations of addition and subtraction in Table 2(a).
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Table 2(a) a+b, b+a
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Table 2(b) axb, bXxa

SN 3 3 7 3 6
a
1 1 1 i 1 1 1
2 4 2 4 2 4 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 1 5 il 5 1 5
6 6 6 6 6 6 6
Table 2(c) a*b (a”)
Z=X+¢ Yyt 3, x+y<3,
2=x+,y—¢ 3, 3<x+y<10, (1.1)

Z:'x+6y_69’ x+y210,



Z=x—¢ ¥yt 9, xX—y<-2,
Z=x—¢ y+¢3, 2<x-y<4, (1.2)

As expected, we have an abelian additive group in Table 2(a). Multiplication and
exponentiation tables are displayed in Table 2(b) and (c). We can see that:

there is no a: a’ € {2,5} (1.3)
forall a, a’=a. (1.4)

This applies generally to even exponents (follow (1.3)) and odd exponents (follow
(1.4)). We utilise these properties now to consider associated diophantine equations.

2. PYTHAGOREAN TRIPLES

We here relate Pythagorean triples to M. The only solutions {c,b,a} € Z¢ of:

c =a’+, b 2.1)
are {4,1,6},{4,6,1}, {4,3,4) and {4,4,3} because of the restrictive distribution of the
squares.

r, € N is the row number of M which corresponds to ke {1,2,...,6}. In general then

(f(N)=(f (1)) +6 (f(1),)? (2.2)
where f(r) =6r, £i. Thus, for example {2,1,6} gives:
(6r, —1)* = (61, —2)* +, (61, +3)* (2.3)

To conform to the primitive Pythagorean triple grid defined previously [3,4] which is

notationally convenient, we use the two internal parameters z and y and the counter
Jj=123,..., and take ¢ > b > a. These parameters are defined by:

z=c-b 2.4)

y=b-a. (2.5)
Case 1. z odd: The component c is given by [3]

1

c=j+(j+z2)? (2.6)
and

y=2j*-z .7

1

with j>(z/2)? andz=(2t-1)*,t=123...
From equations (2.4) and (2.5)

Z:f(r)c 6 f(r)}, (2.8)
and

y=J(r)y — F(r), (2.9)

Thus, the relationships between the r parameters and j and z are easily established.



For {2,1,6}
1
n=02+1+(j+22)?)/6 (2.10)
and if z > 1 then j|z or z|j are invalid j for primitive triples [3].
n=r,—(z-1/6
Q:Q—pf+m/$
Using equations (2.2) and (2.11) we get
n=0Crr+1)-R)/z (2.12)
with R=(z">—4z-9)/12 and r, > r,.

(2.11)

For {2,5,6 }: r, and r, are the same as for equations (2.10), (2.11) respectively, and
r,=r,—(z+3)/6. (2.13)

For {4,3,2}:

1
=0 -1+(j+2%)")/6
r,=r,—(z=1)/6 (2.14)
n=r-0*-D/3

For {4,3,4}: r, and r, and the same as for equation (2.14)
.2
r=r, —J? 2.15)

For the last three sets, r, as a function of z can be derived as for equation (2.12)

Examples are displayed in Table 3(a) where the permissible r functions, calculated
from the above equations, are summarised. If z is prime to 3 it will not apply to

equation (2.13) whereas z must be prime to 3 for the other column sets.

Case 2 z even: When z is even, the parities of b and a are opposite to those for z odd.
Thus, instead of 2,1,6 for the component columns, we get 2,6,1 for ¢, b and a

respectively. The same analysis as for z odd gives the results shown in Table 3(b)



Columns
& ¥ 4 |c b a E r b Triples
2 1 6 R n__Ts
1 1 1 0 1 543
25 (63 59 22 |11 |377,352,135,
121 [ 101 81 60 |11 |605,484,363
4 1 6
2 5 6 rp_rs_Tg
9 11 9 5 4 65,56,33
81 |51 37 34 |7 305,224,207
225 1219 181 122 |17 [ 1313,1088,735
4 3 2 r4_ rsn
1 2 2 1 2 13,12,5
49 |28 20 20 |5 169,120,119
361 | 214 154 149 | 14 | 1285,924,893
4 3 4
4 3 4 ra 13 Iy
1 4 4 1 3 25,24,7
49 |34 26 22 |6 205,156,133
361 [230 170 155 |15 | 1381,1020,931
Table 3(a) Primitive Pythagorean triples with z odd
Columns
¢ b a’ c b a z r J Triples
2 6 1 rn__re___n
2 11 10 3 4 65,63,16
2 33 32 5 7 197,195,28
32 |23 17 15 |4 137,105,88
4 6 1
2 6 5 rn__rs Tg
2 3 2 1 2 17,15,8
8 5 3 3 2 29,21,20
98 |8 72 51 |8 533,435,308
4 2 3 Iy 2 r3
2 6 6 2 3 37,35,12
2 24 24 4 6 145,143,24
8 14 13 6 4 85,77,36
50 (58 50 30 |7 349,299,180
4 4 3
4 4 3 r ry N
18 |12 9 8 3 73,55,48
72 |54 42 34 |6 325,253,204
288 [ 164 116 116 |9 985,697,696

Table 3(b) Primitive Pythagorean Triples with z even




58

The triple component c is given by [3]
1

c=(z2/2)+((z/2)? +(2j-1))> (2.16)
and (b—a) or yis given by:
y=Q2j-1)*-z (2.17)

1

with j> (z2 +1)/2 and z = 2¢°.

For {2,6,1}:
1 3
={(z/2+1)+((2j—1)+(z/2)2)2}/6
r,=r,—(z+4)/6 (2.18)
rn=r,-2j(j-1/3
For {2,6,5}:
r, and r, as for equation (2.18)
r,=r,—2(j -j+1)/3 (2.19)
For {4,2,3}:
1
={(z/2—1)+((2j—1)+(z/2)2)2}/6
r,=r,—(z-2)/6 > (2.20)
r,=r,—2j(j-11/3
For {4,4,3}:

r, and r, as for equation (2.20)
r,=r,—z/6. (2.21)
This column set only applies to z values not prime to 6.

3. CONCLUSIONS

A theorem of Fermat [2] shows that for prime p, (N,p) =1, and k, €2,

NP =1+ pk, 3.1
Then for a®> =1+3k,, b>=1+3k,, and ¢* =1+3k,, (3.1) implies that
(k. —k,)=(1/3)+k, 32)

which gives a non-integer solution. However, if one of the components is not prime
to p (i.e. has a factor of 3 in the case above), then an integer solution is possible.



a9

Suppose a =3" A, where w is a positive integer and A is prime to 3, then we get
a’>=3"+3""f, (3.3)

This result explain why the column sets for the components are confined to {4,3,4} or
{4,3,2} and {2,1,6} or {2,5,6} which give integer solutions for the Pythagorean triples.
Columns 3 and 6 both contain numbers with 3 as a factor; (see (1.2)). For example,
equation (3.3) applies in the case of {2,1,6}. Thus, for the triple (5,4,3) where
w=1k,=0,k, =8 and k, =5. Whilst for the column set {2,5,6}and the triple
(305,224,207), w=2, k, =176, k., =31008 and k, = 16725.

If c=d”,b=¢”" anda=f**, with ¢, b and a being integer components of a
Pythagorean triple, then
d’=e’+¢ f° (3.4)

2 and

Integer values of d”?,e”* andf” only occur when d=d*,e=e
f=f"%d e, f ez Thus d”* =d’’*, and so on. It is known that [2]

d® #e® + f° (3.5)
and since (d**)* =d’®, (¢”*)* =e’® and (f**)* = f’® equation (3.4) cannot be valid
for this case. The same argument can be applied when n=15,7. A more general

analysis to include non-integer values of d** and all odd and even exponents is to be
given in a following paper.
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