# INTEGER CLASS PROPERTIES ASSOCIATED WITH AN INTEGER MATRIX

## J V Leyendekkers and J M Rybak The University of Sydney, 2006, Australia

## A G Shannon University of Technology, Sydney, 2007, Australia

#### **Abstract**

This paper displays some old results in a new way and extends them in the context of the modular ring  $\mathbb{Z}_6$ . Various diophantine properties of an integer matrix modulo 6 are developed in a natural way from tables of the basic binary operations.

#### 1. INTRODUCTION

We define here an integer matrix. This is defined naturally modulo 6 by  $6r \pm i$ , i = 0,1,2,3,; r = 0,1,2,... Various diophantine properties are considered for the equivalence classes partitioned by  $\mathbb{Z}_6[1]$ :

$$\overline{1} = \{4,10,16,22,...\}, \qquad \overline{4} = \{1,7,13,19,...\},$$

$$\overline{2} = \{5,11,17,23,...\}, \qquad \overline{5} = \{2,8,14,20,...\},$$

$$\overline{3} = \{6,12,18,24,...\}, \qquad \overline{6} = \{3,9,15,21,...\}.$$

The elements of  $\{\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6}\}$  are set out in Table 1 where they are defined in terms of the natural number r which defines the rows of the matrix M. As is well known the primes, p > 3, are defined in term of  $6r \pm 1$ , and so  $p \in \{\overline{2},\overline{4}\}$ .

| column | 1    | 2      | 3          | 4      | 5      | 6      |
|--------|------|--------|------------|--------|--------|--------|
| row, r | 6r-2 | 6r - 1 | 6 <i>r</i> | 6r + 1 | 6r + 2 | 6r + 3 |
| 0      |      |        |            | 1      | 2      | 3      |
| 1      | 4    | 5      | 6          | 7      | 8      | 9      |
| 2      | 10   | 11     | 12         | 13     | 14     | 15     |
| 3      | 16   | 17     | 18         | 19     | 20     | 21     |
| 4      | 22   | 23     | 24         | 25     | 26     | 27     |
| 5      | 28   | 29     | 30         | 31     | 32     | 33     |
| 6      | 34   | 35     | 36         | 37     | 38     | 39     |
| 7      | 40   | 41     | 42         | 43     | 44     | 45     |
| 8      | 46   | 47     | 48         | 49     | 50     | 51     |
| 9      | 52   | 53     | 54         | 55     | 56     | 57     |
| 10     | 58   | 59     | 60         | 61     | 62     | 63     |
| 11     | 64   | 65     | 66         | 67     | 68     | 69     |
| 12     | 70   | 71     | 72         | 73     | 74     | 75     |
| 13     | 76   | 77     | 78         | 79     | 80     | 81     |
| 14     | 82   | 83     | 84         | 85     | 86     | 87     |
| 15     | 88   | 89     | 90         | 91     | 92     | 93     |

Table 1

Similarly it is readily observed that  $6|\overline{3}$  and  $3|\overline{6}$ ;  $2|\overline{1},\overline{3},\overline{5}$ ;  $\overline{1}_r|(\overline{3}_r+\overline{5}_{r-1})$ ;  $\overline{2}_r|(\overline{5}_r+\overline{5}_{r-1})$ ,

in which  $a_r$  represents an element in the rth row of M. Similarly we note the basic operations of addition and subtraction in Table 2(a).

| b                                   | 1                        | $\overline{2}$                      | 3                                   | $\overline{4}$              | <del>5</del>                        | <del>6</del>                        |
|-------------------------------------|--------------------------|-------------------------------------|-------------------------------------|-----------------------------|-------------------------------------|-------------------------------------|
| $\frac{a}{\overline{1}}$            | <u>5</u>                 | <u></u>                             | <u> </u>                            | <u> </u>                    | 3                                   | <del></del>                         |
| $\frac{\overline{2}}{\overline{2}}$ | $\frac{\overline{6}}{1}$ | $\frac{\overline{1}}{2}$            | $\frac{\overline{2}}{\overline{2}}$ | $\frac{\overline{3}}{4}$    | $\frac{\overline{4}}{\overline{5}}$ | $\frac{\overline{5}}{\overline{c}}$ |
| $\frac{3}{4}$                       | $\frac{1}{2}$            | $\frac{2}{3}$                       | $\frac{3}{4}$                       | $\frac{4}{5}$               | $\frac{5}{6}$                       | $\frac{6}{1}$                       |
| $\frac{\overline{5}}{6}$            | $\frac{\overline{3}}{4}$ | $\frac{\overline{4}}{\overline{5}}$ | $\frac{\overline{5}}{6}$            | $\frac{\overline{6}}{1}$    | $\frac{\overline{1}}{2}$            | $\frac{\overline{2}}{3}$            |
| $\frac{3}{4}$ $\frac{5}{6}$         | $\frac{2}{3}$            | $\frac{3}{4}$                       | $\frac{3}{4}$ $\frac{5}{6}$         | $\frac{4}{5}$ $\frac{6}{1}$ | $\frac{5}{6}$ $\frac{1}{2}$         | $\frac{6}{1}$ $\frac{2}{3}$         |

**Table 2(a)** a+b, b+a

| a $b$          | 1              | $\overline{2}$ | 3              | $\overline{4}$ | <u>5</u>       | <u></u> 6 |  |
|----------------|----------------|----------------|----------------|----------------|----------------|-----------|--|
| 1              | $\overline{1}$ | <u>5</u>       | 3              | 1              | 5              | 3         |  |
| $\overline{2}$ | <u>5</u>       | $\overline{4}$ | 3              | $\overline{2}$ | $\overline{1}$ | <u>6</u>  |  |
| 3              | 3              | 3              | $\overline{3}$ | 3              | 3              | 3         |  |
| $\overline{4}$ | 1              | $\overline{2}$ | 3              | $\overline{4}$ | <del>5</del>   | <u>6</u>  |  |
| <del>5</del>   | <u>5</u>       | $\overline{1}$ | 3              | <u>5</u>       | $\overline{1}$ | 3         |  |
| <del>6</del>   | 3              | <u>6</u>       | 3              | <u>6</u>       | 3              | <u>6</u>  |  |

**Table 2(b)**  $a \times b$ ,  $b \times a$ 

| b                  | 1              | $\overline{2}$ | 3              | <del>4</del>   | <u>5</u>       | <u>6</u>       |
|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $\frac{\alpha}{1}$ | <del>-</del>   | <del></del>    | <del>-</del>   | <del>-</del>   | <del>-</del>   | <del></del>    |
| 1                  | 1              | 1              | I              | 1              | l              | 1              |
| $\overline{2}$     | 4              | $\overline{2}$ | $\overline{4}$ | $\overline{2}$ | $\overline{4}$ | $\overline{2}$ |
| 3                  | 3              | 3              | 3              | 3              | 3              | 3              |
| $\overline{4}$     | $\overline{4}$ | $\overline{4}$ | $\overline{4}$ | $\overline{4}$ | $\overline{4}$ | $\overline{4}$ |
| <del>5</del>       | 1              | <del>5</del>   | <u>1</u>       | <u>5</u>       | $\overline{1}$ | <u>5</u>       |
| <del>6</del>       | <u>6</u>       | <del>6</del>   | <del>-</del> 6 | <del>6</del>   | <del>6</del>   | <del>6</del>   |

**Table 2(c)**  $a * b (a^b)$ 

$$z = x +_{6} y +_{6} 3, x + y \le 3,$$

$$z = x +_{6} y -_{6} 3, 3 < x + y < 10,$$

$$z = x +_{6} y -_{6} 9, x + y \ge 10,$$
(1.1)

$$z = x - {}_{6} y + {}_{6} 9, x - y < -2,$$

$$z = x - {}_{6} y + {}_{6} 3, -2 \le x - y < 4,$$

$$z = x - {}_{6} y - {}_{6} 3, x - y \ge 4.$$
(1.2)

As expected, we have an abelian additive group in Table 2(a). Multiplication and exponentiation tables are displayed in Table 2(b) and (c). We can see that:

there is no 
$$a: a^2 \in \{\overline{2}, \overline{5}\}\$$
 (1.3)

for all 
$$a$$
,  $a^3 = a$ . (1.4)

This applies generally to even exponents (follow (1.3)) and odd exponents (follow (1.4)). We utilise these properties now to consider associated diophantine equations.

#### 2. PYTHAGOREAN TRIPLES

We here relate Pythagorean triples to M. The only solutions  $\{c, b, a\} \in \mathbb{Z}_6$  of:

$$c^2 = a^2 +_6 b^2 (2.1)$$

are  $\{\overline{4},\overline{1},\overline{6}\}$ ,  $\{\overline{4},\overline{6},\overline{1}\}$ ,  $\{\overline{4},\overline{3},\overline{4}\}$  and  $\{\overline{4},\overline{4},\overline{3}\}$  because of the restrictive distribution of the squares.

 $r_k \in \mathbb{N}$  is the row number of M which corresponds to  $\overline{k} \in \{1,2,...,6\}$ . In general then

$$(f(r)_c)^2 = (f(r)_b)^2 +_6 (f(r)_a)^2$$
 (2.2)

where  $f(r) = 6r_k \pm i$ . Thus, for example  $\{\overline{2}, \overline{1}, \overline{6}\}$  gives:

$$(6r_2 - 1)^2 = (6r_1 - 2)^2 + _6 (6r_6 + 3)^2$$
 (2.3)

To conform to the primitive Pythagorean triple grid defined previously [3,4] which is notationally convenient, we use the two internal parameters z and y and the counter j = 1,2,3,..., and take c > b > a. These parameters are defined by:

$$z = c - b \tag{2.4}$$

$$y = b - a. ag{2.5}$$

Case 1. z odd: The component c is given by [3]

$$c = j^2 + (j + z^{\frac{1}{2}})^2 \tag{2.6}$$

and

$$y = 2j^2 - z (2.7)$$

with  $j > (z/2)^{\frac{1}{2}}$  and  $z = (2t-1)^2, t = 1,2,3...$ 

From equations (2.4) and (2.5)

$$z = f(r)_c - _6 f(r)_b (2.8)$$

and

$$y = f(r)_b - _6 f(r)_a (2.9)$$

Thus, the relationships between the r parameters and j and z are easily established.

For  $\{\overline{2},\overline{1},\overline{6}\}$ 

$$r_2 = (j^2 + 1 + (j + z^{\frac{1}{2}})^2) / 6$$
 (2.10)

and if z > 1 then j|z or z|j are invalid j for primitive triples [3].

$$r_{1} = r_{2} - (z - 1) / 6$$

$$r_{6} = r_{2} - (j^{2} + 2) / 3$$
(2.11)

Using equations (2.2) and (2.11) we get

$$r_1 = (3r_6(r_6+1) - R) / z$$
 (2.12)

with  $R = (z^2 - 4z - 9) / 12$  and  $r_1 > r_6$ .

For  $\{\overline{2},\overline{5},\overline{6}\}$ :  $r_2$  and  $r_6$  are the same as for equations (2.10), (2.11) respectively, and  $r_5 = r_2 - (z+3)/6$ . (2.13)

For  $\{\overline{4},\overline{3},\overline{2}\}$ :

$$r_{4} = (j^{2} - 1 + (j + z^{\frac{1}{2}})^{2}) / 6$$

$$r_{3} = r_{4} - (z - 1) / 6$$

$$r_{2} = r_{4} - (j^{2} - 1) / 3$$
(2.14)

For  $\{\overline{4},\overline{3},\overline{4}\}$ :  $r_3$  and  $r_4$  and the same as for equation (2.14)

$$r_4' = r_4 - \frac{j^2}{3} \tag{2.15}$$

For the last three sets,  $r_k$  as a function of z can be derived as for equation (2.12) Examples are displayed in Table 3(a) where the permissible r functions, calculated from the above equations, are summarised. If z is prime to 3 it will not apply to equation (2.13) whereas z must be prime to 3 for the other column sets.

Case 2z even: When z is even, the parities of b and a are opposite to those for z odd. Thus, instead of  $\overline{2},\overline{1},\overline{6}$  for the component columns, we get  $\overline{2},\overline{6},\overline{1}$  for c, b and a respectively. The same analysis as for z odd gives the results shown in Table 3(b)

|                | ımns           |                |                |                |                |     |       |       |        |    |               |
|----------------|----------------|----------------|----------------|----------------|----------------|-----|-------|-------|--------|----|---------------|
| $c^2$          | $b^2$          | $a^2$          | c              | b              | а              | z   |       | r     |        | j  | Triples       |
|                |                |                | $\overline{2}$ | 1              | <u>6</u>       |     | $r_2$ | $r_1$ | $r_6$  |    |               |
|                |                |                |                |                |                | 1   | 1     | 1     | 0      | 1  | 5,4,3         |
|                |                |                |                |                |                | 25  | 63    | 59    | 22     | 11 | 377,352,135,  |
|                |                |                |                |                |                | 121 | 101   | 81    | 60     | 11 | 605,484,363   |
| $\overline{4}$ | $\overline{1}$ | <del>6</del>   |                |                |                |     |       |       |        |    |               |
|                |                |                | $\overline{2}$ | <del>-</del> 5 | <del>6</del>   |     | $r_2$ | $r_5$ | $r_6$  |    |               |
|                |                |                |                |                |                | 9   | 11    | 9     | 5      | 4  | 65,56,33      |
|                |                |                |                |                |                | 81  | 51    | 37    | 34     | 7  | 305,224,207   |
|                |                |                |                |                |                | 225 | 219   | 181   | 122    | 17 | 1313,1088,735 |
|                |                |                | 4              | 3              | $\overline{2}$ |     | $r_4$ | $r_3$ | $r_2$  |    |               |
|                |                |                |                |                |                | 1   | 2     | 2     | 1      | 2  | 13,12,5       |
|                |                |                |                |                |                | 49  | 28    | 20    | 20     | 5  | 169,120,119   |
|                |                |                |                |                |                | 361 | 214   | 154   | 149    | 14 | 1285,924,893  |
| 4              | 3              | $\overline{4}$ |                |                |                |     |       |       |        |    |               |
|                |                |                | $\overline{4}$ | 3              | $\overline{4}$ |     | $r_4$ | $r_3$ | $r'_4$ |    |               |
|                |                |                |                |                |                | 1   | 4     | 4     | 1      | 3  | 25,24,7       |
|                |                |                |                |                |                | 49  | 34    | 26    | 22     | 6  | 205,156,133   |
|                |                |                |                |                |                | 361 | 230   | 170   | 155    | 15 | 1381,1020,931 |

Table 3(a) Primitive Pythagorean triples with z odd

|       | ımns           |                |                |                |                |     |       |        |       |   |             |
|-------|----------------|----------------|----------------|----------------|----------------|-----|-------|--------|-------|---|-------------|
| $c^2$ | $b^2$          | $a^2$          | c              | b              | а              | z   |       | r      |       | j | Triples     |
|       |                |                | $\overline{2}$ | $\overline{6}$ | $\overline{1}$ |     | $r_2$ | $r_6$  | $r_1$ |   |             |
|       |                |                |                |                |                | 2   | 11    | 10     | 3     | 4 | 65,63,16    |
|       |                |                |                |                |                | 2   | 33    | 32     | 5     | 7 | 197,195,28  |
|       |                |                |                |                |                | 32  | 23    | 17     | 15    | 4 | 137,105,88  |
| 4     | <del>6</del>   | $\overline{1}$ |                |                |                |     |       |        |       |   |             |
|       |                |                | $\overline{2}$ | <u>6</u>       | <u>5</u>       |     | $r_2$ | $r_5$  | $r_6$ |   |             |
|       |                |                |                |                |                | 2   | 3     | 2      | 1     | 2 | 17,15,8     |
|       |                |                |                |                |                | 8   | 5     | 3      | 3     | 2 | 29,21,20    |
|       |                |                |                |                |                | 98  | 89    | 72     | 51    | 8 | 533,435,308 |
|       |                |                | 4              | $\overline{2}$ | 3              |     | $r_4$ | $r_2$  | $r_3$ |   |             |
|       |                |                |                |                |                | 2   | 6     | 6      | 2     | 3 | 37,35,12    |
|       |                |                |                |                |                | 2   | 24    | 24     | 4     | 6 | 145,143,24  |
|       |                |                |                |                |                | 8   | 14    | 13     | 6     | 4 | 85,77,36    |
|       |                |                |                |                |                | 50  | 58    | 50     | 30    | 7 | 349,299,180 |
| 4     | $\overline{4}$ | 3              |                |                |                |     |       |        |       |   |             |
|       |                |                | 4              | $\overline{4}$ | 3              |     | $r_4$ | $r'_4$ | $r_3$ |   |             |
|       |                |                |                |                |                | 18  | 12    | 9      | 8     | 3 | 73,55,48    |
|       |                |                |                |                |                | 72  | 54    | 42     | 34    | 6 | 325,253,204 |
|       |                |                |                |                |                | 288 | 164   | 116    | 116   | 9 | 985,697,696 |

Table 3(b) Primitive Pythagorean Triples with z even

The triple component c is given by [3]

$$c = (z/2) + ((z/2)^{\frac{1}{2}} + (2j-1))^{2}$$
 (2.16)

and (b-a) or y is given by:

$$y = (2j-1)^2 - z (2.17)$$

 $y = (2j-1)^2 - z$ with  $j > (z^{\frac{1}{2}} + 1)/2$  and  $z = 2t^2$ .

For  $\{\overline{2},\overline{6},\overline{1}\}$ :

$$r_{2} = \left\{ (z/2+1) + ((2j-1) + (z/2)^{\frac{1}{2}})^{2} \right\} / 6$$

$$r_{6} = r_{2} - (z+4) / 6$$

$$r_{1} = r_{2} - 2j(j-1) / 3$$
(2.18)

For  $\{\overline{2},\overline{6},\overline{5}\}$ :

$$r_2$$
 and  $r_6$  as for equation (2.18)  
 $r_5 = r_2 - 2(j^2 - j + 1)/3$  (2.19)

For  $\{\overline{4},\overline{2},\overline{3}\}$ :

$$r_{4} = \left\{ (z/2 - 1) + ((2j - 1) + (z/2)^{\frac{1}{2}})^{2} \right\} / 6$$

$$r_{2} = r_{4} - (z - 2) / 6$$

$$r_{3} = r_{4} - 2j(j - 1) / 3$$
(2.20)

For  $\{\overline{4},\overline{4},\overline{3}\}$ :

$$r_3$$
 and  $r_4$  as for equation (2.20)  
 $r'_4 = r_4 - z / 6$ . (2.21)

This column set only applies to z values not prime to 6.

### 3. CONCLUSIONS

A theorem of Fermat [2] shows that for prime p, (N, p) = 1, and  $k_N \in \mathbb{Z}$ ,

$$N^{p-1} = 1 + pk_N (3.1)$$

Then for 
$$a^2 = 1 + 3k_a$$
,  $b^2 = 1 + 3k_b$ , and  $c^2 = 1 + 3k_c$ , (3.1) implies that  $(k_c - k_b) = (1/3) + k_a$  (3.2)

which gives a non-integer solution. However, if one of the components is not prime to p (i.e. has a factor of 3 in the case above), then an integer solution is possible.

Suppose  $a = 3^w A$ , where w is a positive integer and A is prime to 3, then we get  $a^2 = 3^{2w} + 3^{2w+1}k_A$ (3.3)

This result explain why the column sets for the components are confined to  $\{\overline{4},\overline{3},\overline{4}\}$  or  $\{\overline{4},\overline{3},\overline{2}\}$  and  $\{\overline{2},\overline{1},\overline{6}\}$  or  $\{\overline{2},\overline{5},\overline{6}\}$  which give integer solutions for the Pythagorean triples. Columns  $\overline{3}$  and  $\overline{6}$  both contain numbers with 3 as a factor; (see (1.2)). For example, equation (3.3) applies in the case of  $\{\overline{2},\overline{1},\overline{6}\}$ . Thus, for the triple (5,4,3) where  $w=1, k_A=0, k_c=8$  and  $k_b=5$ . Whilst for the column set  $\{\overline{2},\overline{5},\overline{6}\}$  and the triple (305,224,207),  $w=2, k_A=176, k_C=31008$  and  $k_b=16725$ .

The cubic powers are listed in Table 2(c) since  $a^3 = a \in \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$ , If  $c = d^{3/2}$ ,  $b = e^{3/2}$  and  $a = f^{3/2}$ , with c, b and a being integer components of a Pvthagorean triple, then

$$d^3 = e^3 +_6 f^3 (3.4)$$

Integer values of  $d^{3/2}$ ,  $e^{3/2}$  and  $f^{3/2}$  only occur when  $d = d'^2$ ,  $e = e'^2$  and  $f = f'^2$ ; d', e',  $f' \in \mathbb{Z}$ . Thus  $d^{3/2} = d'^3$ , and so on. It is known that [2]

$$d^6 \neq e^6 + f^6 \tag{3.5}$$

and since  $(d^{3/2})^2 = d'^6$ ,  $(e^{3/2})^2 = e'^6$  and  $(f^{3/2})^2 = f'^6$  equation (3.4) cannot be valid for this case. The same argument can be applied when n = 5,7. A more general analysis to include non-integer values of  $d^{3/2}$  and all odd and even exponents is to be given in a following paper.

#### REFERENCES

- 1. A. P. Hillman and G. L. Alexanderson, A First Undergraduate Course in Abstract Algebra, Wadsworth, Belmont, 1973.
- 2. J. Hunter, *Number Theory*, Oliver and Boyd, Edinburgh, 1964.
- 3. J. V. Leyendekkers and J. M. Rybak The generation and analysis of Pythagorean triples within a two-parameter grid. *International Journal of Mathematical Education in Science and Technology*, in press.
- 4. J. M. Rybak, J. V Leyendekkers and A. G. Shannon, Recurrence relation analysis of Pythagorean triple patterns. *Notes on Number Theory and Discrete Mathematics*, 1, 1, 1995, 1-10.