ON AN ARITHMETIC FUNCTION

Lyuben Karagyozov

11 Sofroniy Str., Bourgas-8000, BULGARIA

It is well known that for each two positive integers a, b, if (a, b) = 1, the equality

$$a. \mu - b. \gamma = 1 \tag{*}$$

has a solution for the integers μ and γ (see, e.g., [1]).

Let $(\mu$, γ) \in Z (where Z is the set of the integers) be a solution of (*). For every c, $\alpha \in N$ (where N is the set of the natural numbers), the equality

$$a. y - b. \gamma = \alpha. c$$

has integer solutions, too. For example: $\mu = \mu \cdot \alpha \cdot c$, $\gamma = \gamma \cdot \alpha \cdot c$.

<u>Definition 1</u>: If a, b, c, d \in N and (a, b) = (a.b, c) = 1, then by 1 (α) we shall denote: a, b, c

- (a) the remain of division of $\mu = \mu$. α . c into b, if b is not a divisor of μ ; and
- (b) b, if b is a divisor of μ , where (μ, γ) is an arbitrary solution of (*).

Let everywhere below, a, b and c satisfy the above conditions. Therefore, l (α) is a positive integer and l (α) α , b, c (α) α , b, c

THEOREM 1: The value of 1 (α) is independent on the choise of a, b, c the solution (μ , γ) of (*).

Proof: Let $(\mu$, γ) and $(\mu$, γ) be two different solutions of (*).

Let l is the value of l (α) for $(\mu$, γ) for i=1, 2. Therein fore, there exist integer numbers k and k such that $l=\mu$. α . c-1

k .b. Let $\gamma = \gamma$.a.c - k .a. Obviously l and γ are integers and i

a.
$$1 - b. \gamma^{i} = a. (\mu . \alpha. c - k . b) - b. (\gamma . \alpha. c - k . a)$$

$$= \alpha. c. (a. \mu - b. \gamma) = \alpha c,$$

from where a. (1 - 1) = b. $(\gamma^1 - \gamma^2)$ and from (a, b) = 1 it follows that b is a divisor of 1 - 1. From the fact that 1, $1 \in [1, b]$ it follows directly, that 1 = 1, with which the theorem is proved.

Analogically, the following assertions are proved.

THEOREM 2: Function 1 is a bijection on $Y = \{i, b\}$ over Y.

THEOREM 3: For every natural number α , 1 $(\alpha + b) = 1$ a, b, c a, b, c

THEOREM 4: For every two positive integers α and α :

THEOREM 5: For every two positive integers α and k:

where
$$s = [K.1 (\alpha)/b]$$

a, b, c

finally, we shall note that the following question is interesting: Can the arithmetic function ψ defined in [2] be represented

as a particular case of function 1 a, b, c

REFERENCES:

- [1] Nagell T., Introduction to Number Theory, Almqvist & Wiksell, Stockholm; John Willey & Sons, Inc., New York, 1950.
- [2] Atanassov K., An arithmetic function and some of its applications, Bulletin of Number Theory and Related Topics, Vol. IX (1985), No. 1, 18-27.

AMS Classification Numbers: 11A25