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IS THE RIEMANN HYPOTHESIS PROVED SINCE 10C YEARS AGO?
Aldo Peretti
o
Murillo 1424, 9 , "D", 1441 Buenos Aires, ARGENTINA

With the words of the title I mean to say: it seems that with
the formulas Known 100 years ago, the truth of the Riemann hypo-
thesis (that all the imaginary zeros of the zeta function have re-
al part 1/2}), can be derived in an easy and immediate way.

Let us permit to the reader to form his own concept.

We proceed to develop the subject chronologically.

Year 1859
Riemann publishes his famous memoir. Between other formulas, he
derives the following one:
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Putting there s = 1/2 + 1it, we obtain:
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from which follows the surprising conclusion that §(% + it) is a
real guantity for real t.

This property is mentioned in every textbookK on the subject;
but what every mathenatician {including I myself) has failed to
see, up to the present, is that this property involves a very de-
finite assertion about the zeros on the critical line,

Let us perform together the count; that is very simple.

First of all, from its gdefinition:

§(1 1) (t? + 1) —1/4—1t/2p(1 .t)g(i i)
-+1 = - ———- ) T il e - + 1 .
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Now, if a product of complex numbers equals a real number, then
we must have:
argument of product = 2K 7w
if the real number is positive; or

argument of product - w * 2K 7w
if the real number is negative,
S0 we can write
argument of product = * K 7u

in every case. A
when this is applied to the formula for §(é+it) written above,
we obtain that
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( e+ 1) —1/4—it/8p(1 ‘t)g(i (1)) o
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This implices:

¥ o+ 1 -i/4 -it

/ /2 I 3 t
arg{-{( ) } + arg{m } * arg{F(i + ié)} + arg{C(é + it)} = ¢ k4n.

Here we have:
2 o+ 4 -41/4
}

arg{-(—} 7 = w_+ 2K =@
8{8( ) 5 )
-it/2 -i.t/2.10g ® -t
argi{mn } = argf{e } o= —é.log ot 2K6n.
Conseqguently follows:
-it/2 i ot i )
argi{n } o+ arg{lP(- + i-)} + arg{t(- + it)} = x K =u (A)
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{in all the preceding and subsequent, lines, ki' ke, KB,... denote

integers). C. Haselgrove denotes in his tables [1] O(t) to the ex-

pression
-it/2 i ot
O(t) = arg{m } o+ arg{P(i + lé)}

and points out that it can be numerically evaluated from its asym-
ptotic expansion
t 1 8

t 1
O(t)y = -log— - -
2 2n 2

©
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but in the range € < t < 100 we can dispense from this calculus,
as he gives, in table I, the values of %O(t).
wWith Haselgrove’s notation, egquation (A) turns out to be
O(t) + arg{C(g + 1t)3} = % k7n {B)

which, of course, is valid for all real values of t.
The numerical validity of equations {A) or (B) can e easily
checked by means of his tables, as he gives in other table the va-

1
lues of the real and imaginary parts of C(é + it).

i
The values of the argument of c(é + it)} can then be calculated
by means of the formula
1 ] Im{€(i1/2 + it)}
arg{¢(- + 1it)} = arctg - T K w.
2 Re{f(t/2 + it)} 8
We have thus independently all the ingredients that enter in

formula (A}.

The delaits of the numerical checks, and a graphical represen-
tation of eguation (A) can be seen in [2]}, where also is given an
alternative derivation of the formula.

In order to see how formula (A) determines the position of the
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zeros on the critical line, it 1is sufficient to remember that

i
arg{c(é + it)} has a jump of 17 every time that t c¢rosses a zero

{"argument principle"}, as can also easily seen in the graph for
i

arg{t(é + 1it)}. {Of course, the jump has the value = if the zero

is a simple one; has the value 2w if the zZero is a double one,

etc.). '

This fact enables us to get from identy (A) the condition that

determines the zeros on the critical line. This is evidently:

1 -it/2 1 t 1 )
;{arg{n } o+ arg{P(i + ié)} + arg{c(é + it)}} = integer number ()
and there cannot exist any other kKind of zeros on the critical 1li-
ne,

Otherwise stated, (C) is a necessary and sufficient condition
in order that a given value of t can be a zero of the zeta functi-

on on the critical line. This has been checked numerically in {[2}.

Years 1887-191¢8
Between these years, Stieltjes [3}, von Mangoldt [#], and Back-

lund [5) determine by means of contour integration, the value of
N{(T), the guantity of zeros of the zeta function inside the criti-
cal strip 0 ¢ o < 1 in the interval ¢ < t < T. The methods used by
them are very similar.

The work of von Mangoldt is particularly impressive, as it is
written in a Weierstrassian way where every thing is exhaustively
proved, even in its minimal details. Needless to say, the three
calculations lead to a common resulit, that we proceed to analyse.

For the sake of simplicity, we choose Backlind’s calculation,
as exposed in Titchmarsh’s handbook [6]. .

We have, by Cauchy’s theorem of residues:

S S S
T o2wi E(s)
c

where C is a rectangular contour including the critical stirip; mo-
re specifically, the rectangle with vertices 2, 2+iT, -1+1iT, -4,
Due to reasons of symmetry, we can write this as
O | £’ (s)
Wi o (=)
i
where C1 is the straight part from 2 to 2 + 1T, and then from 2 +

iT to 1/2 + iT.
This can be also written as:
wH(T) = = arg{f(s)}.
1
The calculation then runs as follows:



40

-s/2
mN(T) = AC arg{s{s-1)} + AC arg{w / o+ AC arg{I'(s/2)} + AC arg{f{s)}

1 ] 1 i

1 ) i ) -1/4-1T/2 -2/2
- arg{(é + 1T)(~E + iT)} - arg{2.1} + arg{n } - arg{n } o+

1 T 1
an{P(i + 1é)} - arg{l(1)} + an{C(é + iT)} - arg{i(2)}

T/2 4 T 1 )
= arg{- - T2} + arg{mn 3o+ arg{F(a + 15)} + arg{c(é + 1iT)}

P

-iT/2 i T 1 ]
= 7 + argi{mn } o+ arg{DP(- + i-)} + arg{g(- + iT)}:.
4 2 2

As N(T) can takKe only natural values, this is egquivalent to say
that there is a zero in the upper part of the critical strip every
time that
1 -iT/2 i T i ]
- {arg w + arg P(i + lé) + arg §(é + iT)} = natural number. (D)
W

But it is a Known fact that if g8 + iT is a zero of the zeta

¥ 4
function, then B8 - iT 1is also a zero.
4 k4

Hence, we can generalize (D) to the whole c¢ritical strip by
stating that there are zeros there every time that

iT/2

4 - i T i
- {arg n + arg P(i + ié) + arg c(é + iT)} = integer number. {E)
W

Of course, any formula for N(T) must include the zZeros on the
critical line determined by egquation (C).

But it is a fact that equation (C) coincides with equation (E}:
there are not extra terms in (B) that could account for other =ze-
ros.

Hence the Riemann hypothesis would turn out to be true.
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