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ABSTRACT

This paper explores recurrence relations in their role of providing
internal generators of Pythagorean triples. While the relation of Pellian
recurrence relations to diophantine equations in general is not new, this
paper classifies the internal generators according to their parity and

primality.
1. INTRODUCTION
Pythagorean triples (PTs) a, b, ¢

a® +b*=¢c? (1.1)

may be characterized in terms of the two internal parameters z and y by

—c—b (1.2)
y =b-a (1.3)
so that [1]
a =z+G" (1.4)
b=z+y+G" (1.5)
c =Qz+y)tG" (1.6)

in which G =2z(y+2).
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Unlike z, the parameter y is always odd, since b and a are of opposite parity. It has been

shown [2] that triples with different parity z, but with a common y, are linked via Pellian
sequences. This use of internal generators and Pellian equations extends the work of Shannon

and Horadam [3, 4].

In the present paper the aim is to analyse the structure of the y parameter, which may be a
prime or a composite number. Equations will be derived to predict those values of composite
y containing a given prime. The prime factor patterns of y are compared with those of a
composite number equal to y but derived from a function independent of PTs. This gives y
and the associated parameters a direct link with more general parameters that determine
primality. Finally, a consideration of the end digit patterns for y and z shows how simple the

structure can become when viewed from this angle.

2. THE RECURRENCE RELATIONS

We shall see, for any given z, that the internal parameter y is generated by the second order

nonhomogeneous linear recurrence relation [1]

yn =2yn—l-yn—2+D (2~1)
where
D={4 , zodd
8 , zeven,

2
and z={(2"2 I zodd, g3,
2K 5 z even,
The equation (2.1) has solutions
5, = 2.’2 -z ’ (J > (2/2);) ’ z odd (2.2a)
"ol@i--z (j > (Zé_,_ 1)/2) , zeven (2.2b)

For example, Table 1 shows some cases for z=1,2,9 and j=1,2, ..., 7. The presence of the



jo is the same as j corresponding to y =p for a given z, as given by (2.2a, b). Hence

(p +2)02) (z 0dd) 2.6a)
(psofe1)2 @even (2.6b)

Jo =

These regular patterns depend on the contribution of all PTs, that is, all j and z which satisfy

(2.2 a,b). Forexample, withp=7and z=1:
Jo=2,r=1, ji=(p—-j))=5 Jj=jotnpl2=9;

ja=ji+(mn—-1p/2=12, sothat y,=7,y,=49,y,=161, y,=287and so on;

all the numbers contain the prime factor 7.

3. CASE 1: z GENERATESy =p
As shown in Part 2, when y = p, j has the values given by (2.6a) or (2.6b) and is designated jj,.
The sequence of composite y values containing p can then be generated directly from (2.2a)

to (2.5b) as illustrated in the previous paragraph.

Composite values of y (with factor p) must follow the equation [1]

m = p*+2p(s—1) (3.1)
which applies generally to odd numbers that are not prime. The parameter s = 1, 2, 3, ... and
has no formal structure within the odd composite number system. Therefore, it is of interest to

see what values of s apply for y=m.

Applying the equations of Section 2 we find that, within the PT system, values of s are generated
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by the recurrence relation

§,=8,_1+(n+r—-1)y n>1 (3.2)
where v = v, for even n and v = v, for odd n, with

p (zodd) (3.3a)

v, = {Zp (zeven) (3.3b)

and

_ [2i=Gr=1p (zodd) (3,4a)
17 12Qj,-(r-1)p-1) (zeven) (3.4b)

s, is obtained from (3.1) using j, to calculate m, from (2.2a,b). Solutions of (3.2) are set out in

Table 2.

P4 n 8,
odd odd

(r2+(n -r +i(n2—2n - 1));) -Q2r+n-1)j,+15

odd even 1 . "
5(3 +2j;n +(n"=2)p/2)

even  |odd (@r+n -1y = 1)p/2—(2j,2r +n —=1)=Q2r +n))+0.5

even even 2j,—n+(n*-1)pr2+15

Table 2. Solutions of recurrence relation (3.2)

For example, with z=1p=T7and n=3
r =1;j,=((p +2)/2)"*=2, so that v, =2j,=4,
V=p-w=3ji=mp—j, =5 mx=2./.12—z =49;S1=(m1—p2)/2p+1 =1,

§; =5,+2v,+3v,=18



Using Table 2, we see that
$=(*+(=1r+1/4(n*~2n - 1))p - 2r +n - 1)j,+ 1.5=18

Thus my; =49 + 14x 17 =287 =7 x 41, from (3.1) which is in agreement with y, estimated in

Section 2.

When r = 1 the values of s follow the pattern odd odd even even when z is odd, and when z

iseven s is always odd. For r > 1, apart from an initial perturbation, the same patterns are

followed.

Some values of m and the associated parameters for a given z are shown in Table 3.

4. CASE 2: z DOES NOT GENERATE y =p

When p is not generated directly it will appear as a factor in some of the y values. The lowest
value of y with p as a factor will equal pp, where p, is the lowest value prime that gives j as an

integer in equation (2.1), that is

(PP +2)2¢  (zodd) (4.1a)

Jo= 1
0 ((Ppk+z);+l)/2 (zeven) (4.2b)

For example, if z = 1 and p =79, the lowest value for p, is 31 and j, = 35. Thereafter, the j and
s functions are the same as for case 1. An exception is when p =7 when j, should be calculated

from equation (2.1).



z 1 32 225 80000 29929 72962
P 7 17 17 89 823 1567
o 2 4 11 142 124 137
r 1 1 2 4 1 1
v 4 14 5 32 248 546
m, 49 697 833 104041 947273 8112359
<7 17x41 17x7x7 89x7x167 823x1151 1567x31x167
5 1 13 17 541 165 1806
m, 161 1649 1343 132521 1763689 11534687
7x23 17x97 17x79 89x1489 823x2143 1567x17x433
Sy 9 41 32 701 661 2898
ms 287 3689 2975 288449 4603039 35867063
Tx41 17x7x31 17X7x5%5 89x7x463 823xTx17x47 1567x47x487
S3 18 101 80 1577 2386 10662
My 22897 267257 141287 8640209 310921993 2235609127
7x3271 17x79%199 17x8311 89x97081 823x17x71x313  1567x167x8543
S30 1633 7853 4148 48497 188485 712558
mys | 223111 2640593 1351143 77272025 3101538871 22547652319
7x31873 17x17x9137 17x9x8831 89x25x34729 823x17x31x7151 1567x23321x617
Sos 15934 77657 39732 434069 1883878 7193746
Table 3. Some values of s,
5. CASE 3:z=p?
In this case (which only occurs for z odd) the j and s functions are particularly simple:
Jh=n+1)p (5.1)
and
s,=1l+n(n+2)p (5.2)

n =0,1,2... In these cases it is p2 that is the factor of m, rather than p.



If z = p* and y = p’p, where p, is another prime, are substituted into equations (1.4) to (1.6) we

get

a=p*1+H") (5.3)
b=p*1+p,tH") (5.4)
c=p’Q2+p,tH") (5.5)

with H = 2 (1 + p,), so that such triples are always non-primitive. The same applies when p, is
replaced by multiple primes. This is in accord with previous results [2] whereby y values for
primitive triples were shown to have factors of only certain primes (p,) such as 7, 17, 23, 31,
41, 47, 71.... The remaining primes (p;) are 3, 5, 11, 13, 19, 29... and do not appear to be
compatible with the z, j grid in respect to the y values. That is, these primes do not give integer

solutions when y = p for equation (2.1).

When z is odd and j even, (z+y) should be divisible by 8 to conform to the equations, if j is odd

then (z;+y) =2z, where z; is odd.

When z is even, then (y+z(even)) = z(odd) with z(odd)= 1. This applies to all j. The p; primes

do not conform to these criteria.

6. END DIGIT PATTERNS FOR y AND z

The ending (or last digit) of z will depend on the parity. For example, when z is odd the endings

will be 1, 5 or 9, whereas when z is even the endings will be 0, 2 or 8. The last digit of y will

depend on z (Table 4).



Z even odd even odd even odd
z 0 1 2 5 8 9
y 9,51 97,1 9,7,3 7,5,3 7,3, 1 9,3,1

Table 4: Last Digits of y, z (z" =z (mod 10))

If the m values with a given factor p are grouped according to the last digit, for a given z, then
a very simple pattern emerges. The j values, here designated as k (since they are extracted from

a j series), are generated from the recurrence relations (6.1) and (6.2). When

1 z7=2,8
. . 5 Z‘=O
[m —-x]= s
0 z =5
8 z =19
in which x" =x(mod10),
k,=k,_,+5p,n 23; 6.1)
otherwise k,=k,_4+5p,n 25. (6.2)

The first four values of k are most simply obtained from (2.1) and are related by:

k,=k _,+t (6.3)

where n = 3 or 4. Some values of k,, k, and ¢ are listed in Table 5. For the | m"- x" | listings
above, ¢ equals 5p. When p is generated directly for a particular z (that is, (2.6 a or b) yields
integer j,) and the last digit of p is the same as that of m, t has different values forn =3 and n
=4. This is because p itself starts the sequence of m but has to be discounted because it is a
prime. Double values of ¢ occur for certain digit endings when p is 7 but is not generated directly

for a given z. This anomaly accords with Case 2 above. All values of ¢ are divisible by 5 or p.



m | z |prime,p 7 17 23 31 41 47 71
9 | 2 k, 6 6 21 20 50 51 30
k, 16 40 26 51 8] 91 101
t 14 40 69 85 65 94 225
7| 2 k, 9 12 44 12 9 44 42
k, 27 29 49 74 74 192 172
t 25,10 45 23 70 123 188,47 142
3|2 k, 13 23 113 43 33 98 113
k, 23 63 118 113 173 138 243
t tequals 5p
718 k, 8 83 53 8 38 78 48
k, 28 88 63 148 168 158 308
t tequals 5p
318 k, 15 15 30 55 45 31 95
k, 21 20 40 70 86 111 166
t 20,15 51 46 31 75 94 95
1| 8 k, 7 32 7 24 79 17 24
k, 14 37 17 39 127 64 119
t 15 17 92 93 123,82 155 213
9 |1 k, 5 - 20 55 35 70 20 65
k, 30 65 60 120 135 215 290
t tequals 5p
711 k, 12 37 32 27 12 27 77
k, 23 48 37 58 53 67 148
t 21,14 4540 46 70 140 141 130
1 1 k, 9 14 9 66 29 74 136
k, 16 31 14 89 94 114 219
t 10 40 92 85,70 82 47 213,142
919 k, 8 8 al 12 77 13 18
k, 13 42 42 43 87 107 53
t 14 35 46 100 41 115 284
319 k, 6 9 19 19 36 34 89
k, 29 26 96 74 46 81 124
t 28,7 50 92,23 62 123 120 142
1 {9 k, 15 25 50 50 200 60 160
k, 20 60 65 105 210 175 195
t tequals 5p

Table 5: m": Last Digit of m

The way in which the k values arise can be established from (2.2a, b and Table 4). For example,

when z = 1, mends in 9 for every j ending in 5 or 0. However, not all these m values will have
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p as a factor. In this case, every alternate value of m that ends in 9 and has p as a factor will

occur in 5p jumps for j and hence k. On the other hand, with z =1 and m" =7, j must end in 2,

3,7 or 8. Thej values fall into the pattern 2,3,3,7,7, 8, 8,2, 2, ... so that k, - k, , gives the 5p

increment rather than k, - k, , as form" = 9. Some examples of PTs form =1,z=1,p=7 are

given in Table 6.
m 161 511 7121 1351 3871
n 1 2 3 4 5
j 9 16 19 26 44
Source Table 5 Table 5 (6.3) (6.3) (6.2)
Triple 181 545 761 1405 3961
180 544 760 1404 3960
19 33 39 53 89
145 481 685 1301 3785
144 480 684 1300 3784
-17 -31 -37 -51 -87

Table 6. Triples coresponding to y = m
(m has the prime factor 7, with z = 1 and m* = 1;
triples are from (1.4) to (1.6))
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