Neşe Ömür and Zehra Betül Gür

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 2, Pages 198—204

DOI: 10.7546/nntdm.2020.26.2.198-204

**Download full paper: PDF, 184 Kb**

## Details

### Authors and affiliations

Neşe Ömür

*Department of Mathematics, University of Kocaeli
41380 Izmit Kocaeli, Turkey
*

Zehra Betül Gür

*Department of Mathematics, University of Kocaeli
41380 Izmit Kocaeli, Turkey
*

### Abstract

In this paper, we consider generalized Fibonacci quadratics and give solutions of them under certain conditions. For example, for odd number under condition , the equation

has rational roots.

### Keywords

- Generalized Fibonacci numbers
- Fibonacci quadratics
- Pythagorean triplet

### 2010 Mathematics Subject Classification

- 11B39
- 11B50
- 97F40

### References

- Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers, The Fib. Quart., 3 (3), 161–176.
- Kılıç, E., & Ömür, N. (2010). Conics characterizing the generalized Fibonacci and Lucas sequences with indices in arithmetic progressions, Ars Com., 94, 459–464.
- Kılıç, E., & Stanica, P. (2009). Factorizations and representations of second linear recurrences with indices in arithmetic progressions, Bol. Mex. Math. Soc., 15 (3), 23–35.
- Kılıç, E., & Stanica, P. (2011). Factorizations of binary polynomial recurrences by matrix methods, Rocky Mount. J. Math., 41 (4), 1247–1264.
- Long, C., Cohen, G., & Langtry, T. (1993). Arithmetic sequences and second order

recurrences, Appl. of Fib. Num., 5, 449–458. - Mahanthappa, M. K. (1991). Arithmetic sequences and Fibonacci quadratics, The Fib. Quart., 29 (4), 343–346.
- Umansky, H. (1973). A Fibonacci quadratic, The Fib. Quart., 11, 221–222.

## Related papers

## Cite this paper

Ömür, N., & Betül Gür, Z. (2020). On generalized Fibonacci quadratics. Notes on Number Theory and Discrete Mathematics, 26 (2), 198-204, doi: 10.7546/nntdm.2020.26.2.198-204.