On generalized bicomplex k-Fibonacci numbers

Tülay Yağmur
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 4, Pages 123—133
DOI: 10.7546/nntdm.2019.25.4.123-133
Download full paper: PDF, 166 Kb

Details

Authors and affiliations

Tülay Yağmur
Department of Mathematics, University of Aksaray
68100 Aksaray, Turkey

Abstract

In this paper, we introduce the generalized bicomplex k-Fibonacci numbers. We also give the generating function and Binet’s formula for these numbers. In addition, we obtain some identities such as Honsberger, d’Ocagne’s, Catalan’s, and Cassini’s identities involving the generalized bicomplex k-Fibonacci numbers.

Keywords

  • Fibonacci numbers
  • k-Fibonacci numbers
  • Bicomplex numbers
    Generalized bicomplex numbers
  • Generalized bicomplex k-Fibonacci numbers

2010 Mathematics Subject Classification

  • 11B37
  • 11B39
  • 11R52

References

  1. Aydin, F. T. (2018). On bicomplex Pell and Pell–Lucas numbers, Communications in Advanced Mathematical Sciences, 1 (2), 142–155.
  2. Aydin, F. T. (2018). The k-Fibonacci dual quaternions, Int. J. Mathematical Analysis, 12 (8), 363–373.
  3. Bilgici, G., Tokeser, U., & Unal, Z. (2017). k-Fibonacci and k-Lucas generalized
    quaternions, Konuralp J. Math., 5 (2), 102–113.
  4. Bolat, C., & Kose, H. (2010). On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sci., 5 (22), 1097–1105.
  5. Catarino, P. (2014). On some identities for k-Fibonacci sequence, Int. J. Contemp. Math. Sci., 9 (1), 37–42.
  6. Falcon, S., & Plaza, A. (2007). On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32, 1615–1624.
  7. Falcon, S., & Plaza, A. (2007). The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons and Fractals, 33, 38–49 .
  8. Karakus, S. O., & Aksoyak, F. K. (2015). Generalized bicomplex numbers and Lie groups, Adv. Appl. Clifford Algebras, 25, 943–963.
  9. Luna-Elizarraras, M. E., Shapiro, M., Struppa, D. C., & Vajiac, A. (2012). Bicomplex numbers and their elementary functions, CUBO A Mathematical Journal, 14 (2), 61–80.
  10. Nurkan, S. K., & Guven, I. A. (2018). A note on bicomplex Fibonacci and Lucas numbers, International Journal of Pure and Applied Mathematics, 120 (3), 365–377.
  11. Polatli, E., Kizilates, C., & Kesim, S. (2016). On split k-Fibonacci and k-Lucas quaternions, Adv. Appl. Clifford Algebras, 26, 353–362.
  12. Ramirez, J. L. (2015). Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions, Ann. St. Univ. Ovidius Constanta, 23 (2), 201–212.
  13. Segre, C. (1892). Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40, 413–467.

Related papers

Cite this paper

APA

Yağmur, T. (2019). On generalized bicomplex k-Fibonacci numbers. Notes on Number Theory and Discrete Mathematics, 25(4), 123-133, doi: 10.7546/nntdm.2019.25.4.123-133.

Chicago

Yağmur, Tülay. “On Generalized Bicomplex k-Fibonacci Numbers.” Notes on Number Theory and Discrete Mathematics 25, no. 4 (2019): 123-133, doi: 10.7546/nntdm.2019.25.4.123-133.

MLA

Yağmur, Tülay. “On Generalized Bicomplex k-Fibonacci Numbers.” Notes on Number Theory and Discrete Mathematics 25.4 (2019): 123-133. Print, doi: 10.7546/nntdm.2019.25.4.123-133.

Comments are closed.