Identities for generalized balancing numbers

Robert Frontczak
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 2, Pages 169-180
DOI: 10.7546/nntdm.2019.25.2.169-180
Download full paper: PDF, 190 Kb

Details

Authors and affiliations

Robert Frontczak
Landesbank Baden-Wurttemberg
Am Hauptbahnhof 2, 70173 Stuttgart, Germany

Abstract

We study properties of generalized balancing numbers. We start with some basic identities. Thereafter, we focus on connections to generalized Fibonacci numbers. Using generating functions we prove fundamental relations between these two sequences. Many interesting examples involving balancing, Lucas-balancing, Fibonacci, and Lucas numbers are obtained as special cases of our relations.

Keywords

  • Generating function
  • Balancing number
  • Fibonacci number

2010 Mathematics Subject Classification

  • 11B37
  • 11B39

References

  1. Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers, The Fi-bonacci Quart., 37 (2), 98–105.
  2. Berczes, A., Liptai, K., & Pink, I. (2010). On generalized balancing sequences, The Fi-bonacci Quart., 48, 121–128.
  3. Catarino, P., Campos, H., & Vasco, P. (2015). On some identities for balancing and cobalancing numbers, Anal. Math. et Inf., 45, 11–24.
  4. Frontczak, R. (2018). Convolutions for Generalized Tribonacci Numbers and Related Results, Int. J. Math. Anal., 12 (7), 307–324.
  5. Frontczak, R. (2018). Some Fibonacci–Lucas–Tribonacci–Lucas Identities, The Fibonacci Quart., 56 (3), 263–274.
  6. Frontczak, R. (2019). Relations for Generalized Fibonacci and Tribonacci Sequences, Notes on Number Theory and Discrete Mathematics, 25 (1), 178–192.
  7. Keskin, R. & Karaatli, O. (2012). Some new properties of balancing numbers and square triangular numbers, J. Integer Seq., 15, Article 12.1.4.
  8. Liptai, K. (2004). Fibonacci balancing numbers,The Fibonacci Quart., 42, 330–340.
  9. Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized balancing numbers, Indag. Math. (N.S.), 20, 87–100.
  10. Ozkoc, A. (2015). Tridigonal Matrices viak-Balancing Number,British J. of Math. Comput. Sci., 10 (4), 1–11.
  11. Panda, G. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal Sums of Sequences Involving Balancing and Lucas-Balancing Numbers,Math. Reports, 20, 201–214.
  12. Ray, P. K. (2014). Some congruences for balancing and Lucas-balancing numbers and their applications, Integers, 14, #A8.
  13. Ray, P. K. (2015) Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17 (2), 225–233.
  14. Ray, P. K., Patel, S. & Mandal, M. (2016). Identities for balancing numbers using generating function and some new congruence relations, Notes on Number Theory and Discrete Mathematics, 22 (4), 41–48.
  15. Ray, P. K., & Sahu, J. (2016). Generating functions for certain balancing and Lucas-balancing numbers, Palestine J. Math., 5 (2), 122–129.
  16. Sloane, N. J. A.The On-Line Encyclopedia of Integer Sequences, Published electronically at https://oeis.org.

Related papers

Cite this paper

APA

Frontczak, R. (2019). Identities for generalized balancing numbers. Notes on Number Theory and Discrete Mathematics, 25(2), 169-180, doi: 10.7546/nntdm.2019.25.2.169-180.

Chicago

Frontczak, R. “Identities for generalized balancing numbers.” Notes on Number Theory and Discrete Mathematics 25, no. 2 (2019): 169-180, doi: 10.7546/nntdm.2019.25.2.169-180.

MLA

Frontczak, R. “Identities for generalized balancing numbers
.” Notes on Number Theory and Discrete Mathematics 25.2 (2019): 169-180. Print, doi: 10.7546/nntdm.2019.25.2.169-180.

Comments are closed.