Robert Frontczak

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 2, Pages 169-180

DOI: 10.7546/nntdm.2019.25.2.169-180

**Download full paper: PDF, 190 Kb**

## Details

### Authors and affiliations

Robert Frontczak

*Landesbank Baden-Wurttemberg
Am Hauptbahnhof 2, 70173 Stuttgart, Germany
*

### Abstract

We study properties of generalized balancing numbers. We start with some basic identities. Thereafter, we focus on connections to generalized Fibonacci numbers. Using generating functions we prove fundamental relations between these two sequences. Many interesting examples involving balancing, Lucas-balancing, Fibonacci, and Lucas numbers are obtained as special cases of our relations.

### Keywords

- Generating function
- Balancing number
- Fibonacci number

### 2010 Mathematics Subject Classification

- 11B37
- 11B39

### References

- Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers, The Fi-bonacci Quart., 37 (2), 98–105.
- Berczes, A., Liptai, K., & Pink, I. (2010). On generalized balancing sequences, The Fi-bonacci Quart., 48, 121–128.
- Catarino, P., Campos, H., & Vasco, P. (2015). On some identities for balancing and cobalancing numbers, Anal. Math. et Inf., 45, 11–24.
- Frontczak, R. (2018). Convolutions for Generalized Tribonacci Numbers and Related Results, Int. J. Math. Anal., 12 (7), 307–324.
- Frontczak, R. (2018). Some Fibonacci–Lucas–Tribonacci–Lucas Identities, The Fibonacci Quart., 56 (3), 263–274.
- Frontczak, R. (2019). Relations for Generalized Fibonacci and Tribonacci Sequences, Notes on Number Theory and Discrete Mathematics, 25 (1), 178–192.
- Keskin, R. & Karaatli, O. (2012). Some new properties of balancing numbers and square triangular numbers, J. Integer Seq., 15, Article 12.1.4.
- Liptai, K. (2004). Fibonacci balancing numbers,The Fibonacci Quart., 42, 330–340.
- Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized balancing numbers, Indag. Math. (N.S.), 20, 87–100.
- Ozkoc, A. (2015). Tridigonal Matrices viak-Balancing Number,British J. of Math. Comput. Sci., 10 (4), 1–11.
- Panda, G. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal Sums of Sequences Involving Balancing and Lucas-Balancing Numbers,Math. Reports, 20, 201–214.
- Ray, P. K. (2014). Some congruences for balancing and Lucas-balancing numbers and their applications, Integers, 14, #A8.
- Ray, P. K. (2015) Balancing and Lucas-balancing sums by matrix methods, Math. Reports, 17 (2), 225–233.
- Ray, P. K., Patel, S. & Mandal, M. (2016). Identities for balancing numbers using generating function and some new congruence relations, Notes on Number Theory and Discrete Mathematics, 22 (4), 41–48.
- Ray, P. K., & Sahu, J. (2016). Generating functions for certain balancing and Lucas-balancing numbers, Palestine J. Math., 5 (2), 122–129.
- Sloane, N. J. A.The On-Line Encyclopedia of Integer Sequences, Published electronically at https://oeis.org.

## Related papers

## Cite this paper

APAFrontczak, R. (2019). Identities for generalized balancing numbers. Notes on Number Theory and Discrete Mathematics, 25(2), 169-180, doi: 10.7546/nntdm.2019.25.2.169-180.

ChicagoFrontczak, R. “Identities for generalized balancing numbers.” Notes on Number Theory and Discrete Mathematics 25, no. 2 (2019): 169-180, doi: 10.7546/nntdm.2019.25.2.169-180.

MLAFrontczak, R. “Identities for generalized balancing numbers

.” Notes on Number Theory and Discrete Mathematics 25.2 (2019): 169-180. Print, doi: 10.7546/nntdm.2019.25.2.169-180.