The identities for generalized Fibonacci numbers via orthogonal projection

Yasemin Alp and E. Gökçen Koçer
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 167—177
DOI: 10.7546/nntdm.2019.25.1.167-177
Download full paper: PDF, 171 Kb

Details

Authors and affiliations

Yasemin Alp
Department of Mathematics-Computer Sciences, Faculty of Science
University of Necmettin Erbakan, Meram-Konya, Turkey

E. Gökçen Koçer
Department of Mathematics-Computer Sciences, Faculty of Science
University of Necmettin Erbakan, Meram-Konya, Turkey

Abstract

In this paper, we consider the space R(p, 1) of generalized Fibonacci sequences and orthogonal bases of this space. Using these orthogonal bases, we obtain the orthogonal projection onto a subspace R(p, 1) of ℝn. By using the orthogonal projection, we obtain the identities for the generalized Fibonacci numbers.

Keywords

  • Fibonacci numbers
  • Orthogonal basis

2010 Mathematics Subject Classification

  • 11B39
  • 15A03

References

  1. Alp, Y., & Koçer, E. G. (2018). The Pell, Modified Pell Identities via Orthogonal Projection, Journal of Applied Mathematics and Computation (JAMC), 2 (3), 67–78.
  2. Bretscher, O. (2015). Linear Algebra with Applications, Fifth Edition, Pearson Education.
  3. Dupree, E., & Mathes, B. (2012). Singular Values of k-Fibonacci and k-Lucas Hankel matrices, Int. J. Contemp. Math Sciences, 47 (7), 2327–2339.
  4. Fraleigh, J. B., & Beauregard, R. A. (1995). Linear Algebra, Addison-Wesley Publishing Company.
  5. Hawkins, K., Hebert-Johnson, U., & Mathes, B. (2015). The Fibonacci Identities of Orthogonality, Linear Algebra and Its Application, 475, 80–89.
  6. Horadam, A. F. (1965). Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly, 3 (3), 161–176.
  7. Horzum, T., & Koçer, E. G. (2009). On Some Properties of Horadam Polynomials, International Mathematical Forum, 4 (25), 1243–1252.
  8. Kalman, D., & Mena, R. (2003). The Fibonacci Numbers—Exposed, Mathematics Magazine, 76 (3), 167–181.
  9. Mansour, T. (2004). A formula for the generating functions of powers of Horadam’s Sequence, Australasian Journal of Combinatorics, 30, 207–212.

Related papers

Cite this paper

APA

Alp, Y. & Koçer, E. G. (2019). The identities for generalized Fibonacci numbers via orthogonal projection. Notes on Number Theory and Discrete Mathematics, 25(1), 167-177, doi: 10.7546/nntdm.2019.25.1.167-177.

Chicago

Alp, Yasemin and E. Gökçen Koçer. “The Identities for Generalized Fibonacci Numbers via Orthogonal Projection.” Notes on Number Theory and Discrete Mathematics 25, no. 1 (2019): 167-177, doi: 10.7546/nntdm.2019.25.1.167-177.

MLA

Alp, Yasemin and E. Gökçen Koçer. “The Identities for Generalized Fibonacci Numbers via Orthogonal Projection.” Notes on Number Theory and Discrete Mathematics 25.1 (2019): 167-177. Print, doi: 10.7546/nntdm.2019.25.1.167-177.

Comments are closed.