Taras Goy

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 24, 2018, Number 1, Pages 103—108

DOI: 10.7546/nntdm.2018.24.1.103-108

**Download full paper: PDF, 167 Kb**

## Details

### Authors and affiliations

Taras Goy

*Department of Mathematics and Informatics
Vasyl Stefanyk Precarpathian National University
57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
*

### Abstract

Applying the apparatus of triangular matrices, we proved new recurrence formulas for the Fibonacci and Lucas numbers with even (odd) indices by tridiagonal determinants.

### Keywords

- Fibonacci numbers
- Lucas numbers
- Horadam sequence
- Triangular matrix
- Parapermanent of triangular matrix

### 2010 Mathematics Subject Classification

- 11B39
- 11C20

### References

- Civciv, H. (2008) A note on the determinant of five-diagonal matrices with Fibonacci numbers, Int. J. Contemp. Math. Sciences, 3(9), 419–424.
- Ipek, A. (2011) On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers, Eurasian Math. J., 2(2), 60–74.
- Ipek, A., K. Arı (2014) On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers, Appl. Math. Comput., 229, 433–439.
- Jaiswal, D. V. (1969) On determinants involving generalized Fibonacci numbers, Fibonacci Quart., 7(3), 319–330.
- Horadam, A.F. (1961) A generalized Fibonacci Sequence, Amer. Math. Monthly, 68, 455–459.
- Koshy, T. (2001) Fibonacci and Lucas Numbers with Applications, New York: John Wiley & Sons.
- Kwong, H. (2007) Two determinants with Fibonacci and Lucas entries, Appl. Math. Comput., 194(2), 568–571.
- Tangboonduangjit, A., T. Thanatipanonda (2015) Determinants containing powers of generalized Fibonacci numbers, http://arxiv.org/pdf/1512.07025.pdf.
- Zatorsky, R. (2015) Introduction to the theory of triangular matrices (tables). In: I. I. Kyrchei (eds.) Advances in Linear Algebra Research, New York: Nova Science Publishers, 185–238.
- Zatorsky, R. A. (2002) On paradeterminants and parapermanents of triangular matrices, Matematychni Studii, 17(1), 3–17 (in Ukranian).
- Zatorsky, R. A. (2007) Theory of paradeterminants and its applications, Algebra Discrete Math., 1, 108–137.
- Zatorsky, R., T. Goy (2016) Parapermanents of triangular matrices and some general theorems on number sequences, J. Integer Seq., 19(2), Article 16.2.2.
- Zatorsky, R. A., I. I. Lishchynskyy (2006) On connection between determinants and paradeterminants, Matematychni Studii, 25(1), 97–102 (in Ukranian).

## Related papers

## Cite this paper

APAGoy, T. (2018). Fibonacci and Lucas numbers via the determinants of tridiagonal matrix. Notes on Number Theory and Discrete Mathematics, 24(1), 103-108, doi: 10.7546/nntdm.2018.24.1.103-108.

ChicagoGoy, Taras. “Fibonacci and Lucas Numbers via the Determinants of Tridiagonal Matrix.” Notes on Number Theory and Discrete Mathematics 24, no. 1 (2018): 103-108, doi: 10.7546/nntdm.2018.24.1.103-108.

MLAGoy, Taras. “Fibonacci and Lucas Numbers via the Determinants of Tridiagonal Matrix.” Notes on Number Theory and Discrete Mathematics 24.1 (2018): 103-108. Print, doi: 10.7546/nntdm.2018.24.1.103-108.