Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

Taras Goy
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 1, Pages 103—108
DOI: 10.7546/nntdm.2018.24.1.103-108
Download full paper: PDF, 167 Kb

Details

Authors and affiliations

Taras Goy
Department of Mathematics and Informatics
Vasyl Stefanyk Precarpathian National University
57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine

Abstract

Applying the apparatus of triangular matrices, we proved new recurrence formulas for the Fibonacci and Lucas numbers with even (odd) indices by tridiagonal determinants.

Keywords

  • Fibonacci numbers
  • Lucas numbers
  • Horadam sequence
  • Triangular matrix
  • Parapermanent of triangular matrix

2010 Mathematics Subject Classification

  • 11B39
  • 11C20

References

  1. Civciv, H. (2008) A note on the determinant of five-diagonal matrices with Fibonacci numbers, Int. J. Contemp. Math. Sciences, 3(9), 419–424.
  2. Ipek, A. (2011) On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers, Eurasian Math. J., 2(2), 60–74.
  3. Ipek, A., K. Arı (2014) On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers, Appl. Math. Comput., 229, 433–439.
  4. Jaiswal, D. V. (1969) On determinants involving generalized Fibonacci numbers, Fibonacci Quart., 7(3), 319–330.
  5. Horadam, A.F. (1961) A generalized Fibonacci Sequence, Amer. Math. Monthly, 68, 455–459.
  6. Koshy, T. (2001) Fibonacci and Lucas Numbers with Applications, New York: John Wiley & Sons.
  7. Kwong, H. (2007) Two determinants with Fibonacci and Lucas entries, Appl. Math. Comput., 194(2), 568–571.
  8. Tangboonduangjit, A., T. Thanatipanonda (2015) Determinants containing powers of generalized Fibonacci numbers, http://arxiv.org/pdf/1512.07025.pdf.
  9. Zatorsky, R. (2015) Introduction to the theory of triangular matrices (tables). In: I. I. Kyrchei (eds.) Advances in Linear Algebra Research, New York: Nova Science Publishers, 185–238.
  10. Zatorsky, R. A. (2002) On paradeterminants and parapermanents of triangular matrices, Matematychni Studii, 17(1), 3–17 (in Ukranian).
  11. Zatorsky, R. A. (2007) Theory of paradeterminants and its applications, Algebra Discrete Math., 1, 108–137.
  12. Zatorsky, R., T. Goy (2016) Parapermanents of triangular matrices and some general theorems on number sequences, J. Integer Seq., 19(2), Article 16.2.2.
  13. Zatorsky, R. A., I. I. Lishchynskyy (2006) On connection between determinants and paradeterminants, Matematychni Studii, 25(1), 97–102 (in Ukranian).

Related papers

Cite this paper

APA

Goy, T. (2018). Fibonacci and Lucas numbers via the determinants of tridiagonal matrix. Notes on Number Theory and Discrete Mathematics, 24(1), 103-108, doi: 10.7546/nntdm.2018.24.1.103-108.

Chicago

Goy, Taras. “Fibonacci and Lucas Numbers via the Determinants of Tridiagonal Matrix.” Notes on Number Theory and Discrete Mathematics 24, no. 1 (2018): 103-108, doi: 10.7546/nntdm.2018.24.1.103-108.

MLA

Goy, Taras. “Fibonacci and Lucas Numbers via the Determinants of Tridiagonal Matrix.” Notes on Number Theory and Discrete Mathematics 24.1 (2018): 103-108. Print, doi: 10.7546/nntdm.2018.24.1.103-108.

Comments are closed.