Aldous Cesar F. Bueno

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 4, Pages 56—61

**Download full paper: PDF, 161 Kb**

## Details

### Authors and affiliations

Aldous Cesar F. Bueno

*Philippine Science High School, Central Luzon Campus
Lily Hill, Clark Freeport Zone, Pampanga, Philippines
*

### Abstract

We study two right circulant determinant sequences. The first sequence makes use of Jacobsthal numbers of the form *J*_{s+t} while the other makes use of Jacobsthal–Lucas numbers of the form *K*_{s+t}, where *s*, *t* ∈ ℤ and *s* ≠ *t*. We also give some open problems.

### Keywords

- Determinants sequence
- Jacobsthal numbers
- Jacobsthal–Lucas numbers

### AMS Classification

- 15B05

### References

- Bahsi, M. & Solak, S.(2010) On the Circulant Matrices with Arithmetic Sequence, International Journal of Contemporary Matematical. Sciences, 5(25), 1213–1222.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with a General Number Sequence, arXiv: 1202.1068v1 [math.NA] 6 Feb 2012.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with Jacobsthal and Lucas–Jacobsthal Numbers, arXiv: 1201.6058v1 [math.NA] 29 Jan 2012.
- Bozkurt, D. (2012) On the Determinants and Inverses of Circulant Matrices with Pell and Pell–Lucas Numbers, arXiv: 1201.6061v1 [math.NA] 29 Jan 2012.
- Bueno, A.C.F. (2012) On Right Circulant Matrices with Geometric Progression, International Journal of Applied Mathematical Research, 1(4), 593–603.
- Bueno, A.C.F. (2012) Right Circulant Matrices with Fibonacci Sequence, International Journal of Mathematics and Scientific Computing, 2(2), 9–10.
- Bueno, A.C.F. (2013) Right Circulant Matrices with Jacobsthal Sequence, International Journal of Advanced Mathematical Sciences, 1(2), 87–90.
- Bueno, A.C.F. (2013) Generalized Right Circulant Matrices with Geometric Sequence, International Journal of Mathematics and Scientific Computing, 3(1), 17–18
- Bueno, A.C.F. (2014) On the Eigenvalues and the Determinant of the Right Circulant Matrices with Pell and Pell–Lucas Numbers, International Journal of Mathematics and Scientific Computing, 4(1), 19–20.
- Bueno, A.C.F. (2014) Right Circulant Matrices with Sum of the Terms of Two Geometric Sequences, International Journal of Mathematics and Scientific Computing, 4(2), 51–52.
- Civciv, H. & Turkmen, R. Notes on Norms of Circulant Matrices with Lucas Numbers, International Journal of Information and System Sciences, 4(1), 142–147.
- Gray, R. Toeplitz and Circulant Matrices: A Review, http://ee.stanford.edu/˜gray/toeplitz.pdf
- Majumdar, A.A.K. Wandering in the World of Smarandache Numbers, http://fs.gallup.unm.edu/Majumdar.pdf
- Nalli, A. & Sen, M. (2010) On the Norms of Circulant Matrices with Generalized Fibonacci Numbers, Selcuk Journal of Applied Mathematics, 11(1), 107–116.
- Shen, S. & Cen, J. (2011) On the Norms of Circulant Matrices with the (k; h)-Fibonacci and (k; h)-Lucas Numbers, International Journal of Contemporary Mathematics and Sciences, 6(19), 887–894.
- Yalciner, A. (2008) Spectral Norms of Some Special Circulant Matrices, International Journal of Contemporary Mathematics and Sciences, 3(35), 1733–1738.

## Related papers

## Cite this paper

APABueno, A. C. F. (2016). Right circulant determinant sequences with Jacobsthal and Jacobsthal–Lucas Numbers. Notes on Number Theory and Discrete Mathematics, 22(4), 56-61.

ChicagoBueno, Aldous Cesar F. “Right Circulant Determinant Sequences with Jacobsthal and Jacobsthal–Lucas Numbers.” Notes on Number Theory and Discrete Mathematics 22, no. 4 (2016): 56-61.

MLABueno, Aldous Cesar F. “Right Circulant Determinant Sequences with Jacobsthal and Jacobsthal–Lucas Numbers.” Notes on Number Theory and Discrete Mathematics 22.4 (2016): 56-61. Print.