** Aldous Cesar F. Bueno**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 3, Pages 79—83

**Download full paper: PDF, 164 Kb**

## Details

### Authors and affiliations

Aldous Cesar F. Bueno

*Philippine Science High School-Central Luzon Campus
Lily Hill, Clark Freeport Zone, Pampanga, Philippines*

### Abstract

We introduce the right circulant matrices with ratio of the elements of Fibonacci and geometric sequence. Furthermore, we investigate their eigenvalues, determinant, Euclidean norm, and inverse

### Keywords

- Right circulant matrix with ratio of the elements of Fibonacci and geometric sequence
- Eigenvalues
- Determinant
- Euclidean norm
- Matrix inverse

### AMS Classification

- 15B05

### References

- Bueno, A. (2012) Right Circulant Matrices with Geometric Progression, International Journal of Applied Mathematical Research, 1(4), 593–603.
- Bueno, A. (2012) Right Circulant Matrices with Fibonacci Sequence, International Journal of Mathematics and Scientific Computing, 2(2), 8–9.
- Bahsi, M., & Solak, S. (2010) On the Circulant Matrices with Arithmetic Sequence, International Journal of Contemporary Mathematical Sciences, 5(25), 1213–1222.

## Related papers

## Cite this paper

APABueno, A. C. F. (2016). Right circulant matrices with ratio of the elements of Fibonacci and geometric sequence, Notes on Number Theory and Discrete Mathematics, 22(3), 79-83.

ChicagoBueno, Aldous Cesar F. “Right Circulant Matrices with Ratio of the Elements of Fibonacci and Geometric Sequence.” Notes on Number Theory and Discrete Mathematics 22, no. 3 (2016): 79-83.

MLABueno, Aldous Cesar F. “Right Circulant Matrices with Ratio of the Elements of Fibonacci and Geometric Sequence.” Notes on Number Theory and Discrete Mathematics 22.3 (2016): 79-83. Print.