J. V. Leyendekkers and A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 21, 2015, Number 3, Pages 64—69

**Download full paper: PDF, 95 Kb**

## Details

### Authors and affiliations

J. V. Leyendekkers

*Faculty of Science, The University of Sydney
NSW 2006, Australia
*

A. G. Shannon

*Faculty of Engineering & IT, University of Technology, Sydney
NSW 2007, Australia
*

### Abstract

The structures of Pell and Lucas numbers, Pp and Lp with prime subscripts are compared in relation to the function (Kp ± 1) and for factors of the form (kp ± 1). It is found that digit sums give some guides to primality.

### Keywords

- Pell numbers
- Lucas numbers
- Primality
- Digit sums

### AMS Classification

- 11B39
- 11B50

### References

- Dubner, H., & Keller, W. (1999) New Fibonacci and Lucas Primes. Mathematics of Computation. 68, 417−427.
- Forget, T. W., & Larkin, T. A. (1968). Pythagorean Triads of the form
*x, x + 1, z*described by Recurrence Sequences. The Fibonacci Quarterly 6 (3): 94–104. - Horadam, A.F. (1971) Pell Identities. The Fibonacci Quarterly. 9 (3): 245–252, 263.
- Leyendekkers, J. V., & Shannon, A. G. (1998) Fibonacci Numbers within Modular Rings. Notes on Number Theory and Discrete Mathematics. 4 (4): 165–174.
- Leyendekkers, J. V., & Shannon, A. G. (2013) The Structure of the Fibonacci Numbers in the Modular Ring
*Z*_{5}. Notes on Number Theory and Discrete Mathematics. 19(1), 66–72. - Leyendekkers, J. V., & Shannon, A. G. (2013) Fibonacci and Lucas Primes. Notes on Number Theory and Discrete Mathematics. 19(2): 49–59.
- Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. 20(2), 6–9.
- Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Numbers with Prime Subscripts: Digital Sums for Primes versus Composites. Notes on Number Theory and Discrete Mathematics. 20(3), 45–49.
- Leyendekkers, J. V., & Shannon, A. G. (2014) Fibonacci Number Sums as Prime Indicators. Notes on Number Theory and Discrete Mathematics, 20(4), 47–52.
- Leyendekkers, J. V., Shannon, A. G. & Rybak, J.M. (2007) Pattern Recognition: Modular Rings and Integer Structure. North Sydney: Raffles KvB Monograph No.9.
- McDaniel, W. (2002) On Fibonacci and Pell Numbers of the form
*kx*^{2}: Almost every term has a 4r + 1 prime factor. The Fibonacci Quarterly. 40(1), 41–42. - Ray, P. K. (2013) New Identities for the Common Factors of Balancing and Lucas-Balancing numbers. Int. J. of Pure and Applied Mathematics. 85(3), 487–494.
- Ribenboim, P. (1999) Pell Numbers, Squares and Cubes. Publicationes Mathematicae-Debrecen. 54(1–2), 131–152.
- Robbins, N. (1983) On Fibonacci Numbers of the Form PX
^{2}where P is Prime. The Fibonacci Quarterly. 21(3), 266–271. - Robbins, N. (1984) On Pell Numbers of the Form PX
^{2}where P is Prime. The Fibonacci Quarterly. 22(4), 340–348. - Watkins, J J. (2014) Number Theory: A Historical Approach. Princeton and Oxford: Princeton University Press, pp. 271–272.

## Related papers

## Cite this paper

APALeyendekkers, J. V., & Shannon, A. G. (2015). Pell and Lucas primes. Notes on Number Theory and Discrete Mathematics, 21(3), 64-69.

ChicagoLeyendekkers, J. V., and A. G. Shannon. “Pell and Lucas Primes.” Notes on Number Theory and Discrete Mathematics 21, no. 3 (2015): 64-69.

MLALeyendekkers, J. V., and A. G. Shannon. “Pell and Lucas Primes.” Notes on Number Theory and Discrete Mathematics 21.3 (2015): 64-69. Print.