On the inequalities for beta function

Barkat Ali Bhayo and József Sándor
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 21, 2015, Number 2, Pages 1—7
Download full paper: PDF, 152 Kb

Details

Authors and affiliations

Barkat Ali Bhayo
Department of Mathematical Information Technology, University of Jyväskylä
40014 Jyväskylä, Finland

József Sándor
Babeș-Bolyai University, Department of Mathematics
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania

Abstract

Here authors establish the sharp inequalities for classical beta function by studying the inequalities of trigonometric sine function

Keywords

  • Gamma function
  • Beta function
  • Sine function
  • Jordan inequality

AMS Classification

  • 33B15
  • 26D05
  • 26D07
  • 26D15

References

  1. Abramowitz, M., & Stegun, I., eds. (1965) Handbook of Mathematical Functions with Formulas,Graphs and Mathematical Tables. National Bureau of Standards, Dover, New York.
  2. Alzer, H. (2003) Some beta function inequalities, Proc. of the Royal Soc. of Edinburgh, 133A, 731–745.
  3. Alzer, H. (1993) Some gamma function inequalities, Math. Comp., 60, 337–346.
  4. Alzer, H. (1997) On some inequalities for the gamma and psi functions, Math. Comp., 66,373–389.
  5. Anderson, G.D., Vamanamurthy, M.K., & Vuorinen, M. (1993) Inequalities of quasiconformal mappings in the space, Pacific J. Math., 160(1).
  6. Bhayo, B.A., & Sandor, J. (2014) On classical inequalities of trigonometric and hyperbolicfunctions, May 2014, http://arxiv.org/pdf/1405.0934.pdf.
  7. Andrews, G., Askey, R., & Roy, R. (1999) Special Functions, Encyclopedia of Mathematicsand its Applications, Vol. 71, Cambridge Univ. Press.
  8. Dragomir, S.S., Agarwal, R.P. & Barnett, N.S. (2000) Inequalities for beta and gamma functions via some classical and new integral inequalities, J. Inequal. Appl., 5, 103–165.
  9. Ivady, P. (2012) On a beta function inequality, J. Math. Inequal., 6(3), 333–341.
  10. Klen, R., Visuri, M., & Vuorinen, M. (2010) On Jordan type inequalities for hyperbolic functions, J. Ineq. Appl., Vol. 2010, Art. ID 362548, pp. 14.
  11. Mitrinovic, D.S. (1970) Analytic Inequalities, Springer-Verlag, Berlin.
  12. Neuman, E. & S´andor, J. (2010) On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities,Math. Inequal. Appl. 13(4), 715–723.
  13. Qiu, S.-L. & Vuorinen, M. (2004) Some properties of the gamma and psi functions withapplications, Math. Comp., 74(250), 723–742.
  14. Sandor, J. (2014) A bibliography on gamma functions: inequalities and applications, June 2014, Available online: http://www.math.ubbcluj.ro/jsandor/letolt/art42.pdf.
  15. Spanier, J. & Oldham, K.B. (1987) An atlas of functions, Hemisphere Publishing, Washington.

Related papers

Cite this paper

APA

Bhayo, B. A. & Sándor, J. (2015). On the inequalities for beta function. Notes on Number Theory and Discrete Mathematics, 21(2), 1-7.

Chicago

Bhayo, Barkat Ali, and József Sándor. “On the Inequalities for Beta Function.” Notes on Number Theory and Discrete Mathematics 21, no. 2 (2015): 1-7.

MLA

Bhayo, Barkat Ali, and József Sándor. “On the Inequalities for Beta Function.” Notes on Number Theory and Discrete Mathematics 21.2 (2015): 1-7. Print.

Comments are closed.