József Sándor

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 20, 2014, Number 5, Pages 25—30

**Download full paper: PDF, 142 Kb**

## Details

### Authors and affiliations

József Sándor

*Department of Mathematics, Babeș-Bolyai University,
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania
*

### Abstract

We offer connections between upper Hermite–Hadarmard type inequalities for geometric convex and logarithmically convex functions.

### Keywords

- Integral inequalities
- Geometric convex functions
- log-convex functions

### AMS Classification

- 26D15
- 26D99
- 26A51

### References

- Gill, P. M., C. E. M. Pearce, J. Pečarić, Hadamard’s inequality for
*r*-convex functions,J. Math. Anal. Appl., Vol. 215, 1997, No. 2, 461–470 - Iscan, I. Some new Hermite–Hadamard type inequalities for geometrically convex functions,Math. and Stat., Vol. 1, 2013, No. 2, 86–91
- Neuman, E., J. Sándor, Inequalities involving Stolarsky and Gini means, Math. Pannonica, Vol. 14, 2003, No. 1, 29–44
- Niculescu, C. P., L.-E. Persson, Convex Functions and Their Applications, CMS Books in Math., Springer, 2005.
- Sándor, J. On certain weighted means, Octogon Math. Mag., Vol. 20, 2012, No. 1, 149–157
- Xi, B.-Y., F. Qi, Integral inequalities and Simpson type for logarithmically convex functions, Adv. Stud. Contemp. Math. , Vol. 23, 2013, No. 4, 559–566.
- Roberts, A. W., D. E. Varberg, Convex Functions , Academic Press, New York, 1973

## Related papers

## Cite this paper

APASándor, J. (2014). On upper Hermite–Hadamard inequalities for geometric-convex and log-convex functions. Notes on Number Theory and Discrete Mathematics, 20(5), 25-30.

ChicagoSándor, József. “On upper Hermite–Hadamard inequalities for geometric-convex and log-convex functions.” Notes on Number Theory and Discrete Mathematics 20, no. 5 (2014): 25-30.

MLASándor, József. “On upper Hermite–Hadamard inequalities for geometric-convex and log-convex functions.” Notes on Number Theory and Discrete Mathematics 20.5 (2014): 25-30. Print.