József Sándor and Barkat Ali Bhayo

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 20, 2014, Number 4, Pages 1—10

**Download full paper: PDF, 178 Kb**

## Details

### Authors and affiliations

József Sándor

*Babeș-Bolyai University, Department of Mathematics
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania
*

Barkat Ali Bhayo

*Department of Mathematical Information Technology, University of Jyväskylä
40014 Jyväskylä, Finland
*

### Abstract

Here authors establish the inequalities for two means *X* and *Y* studied in [11], and give the series expansion of these means.

### Keywords

- Means and their inequalities
- Trigonometric functions
- Hyperbolic functions
- Series representation

### AMS Classification

- 26D05
- 26D15
- 26D99

### References

- Abramowitz, M., I. Stegun (Eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Dover, New York, 1965.
- Alzer, H., Two inequalities for means, C. R. Math. Rep. Acad. Sci. Canada, Vol. 9, 1987, 11–16.
- Alzer, H., S.-L Qiu, Inequalities for means in two variables, Arch. Math., Vol. 80, 2003, 201–205.
- Carlson, B. C., The logarithmic mean, Amer. Math. Monthly, Vol. 79, 1972, 615–618.
- Mitrinović, D. S., Analytic Inequalities, Springer–Verlag, Berlin, 1970.
- Neuman, E., J. Sándor, On the Schwab–Borchardt mean, Math. Pannonica, Vol. 14, 2003, No. 2, 253–266.
- Neuman, E., J. Sándor, On the Schwab–Borchardt mean II, Math. Pannonica, Vol. 17, 2006, No. 1, 49–59.
- Neuman, E., J. Sándor, Companion inequalities for certain bivariate means, Appl. Anal. Discr. Math., Vol. 3, 2009, 46–51.
- Neuman, E., J. Sándor, On certain means of two arguments and their extensions, Intern. J. Math. Sci., Vol. 16, 2003, 981–993.
- Sándor, J., Trigonometric and hyperbolic inequalities, 2011, http://arxiv.org/abs/1105.0859.
- Sándor, J., On two new means of two variables, Notes Number Th. Discr. Math., Vol. 20, 2014, No. 1, 1–9.
- Sándor, J., On the identric and logarithmic means, Aequat. Math., Vol. 40, 1990, 261–270.
- Sándor, J., A note on certain inequalities for means, Arch. Math. (Basel), Vol. 56, 1991, 471–473.
- Sándor, J., On certain identities for means, Studia Univ. Babes-Bolyai, Math., Vol. 38, 1993, 7–14.
- Sándor, J., On certain inequalities for means III, Arch. Math. (Basel), Vol. 67, 2001, 34–40.
- Sándor, J., New refinements of two inequalities for means, J. Math. Inequal., Vol. 7, 2013, No. 2, 251–254.
- Seiffert, H. J., Comment to Problem 1365, Math. Mag., Vol. 65, 1992, 356.
- Seiffert, H. J., Ungleichungen fur einen bestimmten Mittelwert, Nieuw Arch. Wiskunde (Ser. 4), Vol. 13, 1995, 195–198.
- Seiffert, H. J., Problem 887, Nieuw. Arch. Wisk., Vol. 11, 1993, 176.

## Related papers

- Sándor, J. On two new means of two variables. Notes on Number Theory and Discrete Mathematics, Volume 20, 2014, Number 1, 1-9.

## Cite this paper

APASándor, J. & Bhayo, B. A. (2014). On two new means of two variables II. Notes on Number Theory and Discrete Mathematics, 20(4), 1-10.

ChicagoSándor, József, and Barkat Ali Bhayo. “On Two New Means of Two Variables II.” Notes on Number Theory and Discrete Mathematics 20, no. 4 (2014): 1-10.

MLASándor, József, and Barkat Ali Bhayo. “On Two New Means of Two Variables II.” Notes on Number Theory and Discrete Mathematics 20.4 (2014): 1-10. Print.