Mickey Polasub

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 18, 2012, Number 4, Pages 71—72

**Download full paper: PDF, 103 Kb**

## Details

### Authors and affiliations

Mickey Polasub

*9/34 Ramintra 40 Rd.
Nuanchan, Beungkum, Bangkok, Thailand 10230*

### Abstract

We provide a short proof of a generalization of a recent result of Virgolici on the diophantine equation 2* ^{x}* + 1009

*=*

^{y}*p*.

^{z}### Keywords

- Exponential diophantine equations
- Primitive divisors

### AMS Classification

- Primary: 11D61

### References

- Bilu, Y., G. Hanrot, P. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., Vol. 539, 2001, 75–122.
- Pink, I., Z. Rabai, On the diophantine equation
*x*^{2}+517^{k}=^{l}*y*, Communications in Math., Vol. 19, 2011, 1–9.^{n} - Virgolici, H. On the exponential diophantine equation 2
+1009^{x}=^{y}*p*, Analele Univ. Spiru Haret – Seria Mat.-Inf., Vol. 7, 2011, 1–9.^{z}

## Related papers

## Cite this paper

APAPolasub, M. (2012). A comment on a result of Virgolici. Notes on Number Theory and Discrete Mathematics, 18(4), 71-72.

ChicagoPolasub, Mickey “A Comment on a Result of Virgolici.” Notes on Number Theory and Discrete Mathematics 18, no. 4 (2012): 71-72.

MLAPolasub, Mickey “A Comment on a Result of Virgolici.” Notes on Number Theory and Discrete Mathematics 18.4 (2012): 71-72. Print.