K. R. Vasuki, G. Sharath and K. R. Rajanna

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 17, 2011, Number 4, Pages 37—41

**Download full paper: PDF, 185 Kb**

## Details

### Authors and affiliations

K. R. Vasuki

*Department of Studies in Mathematics, University of Mysore
Manasagangotri, Mysore-570 006, India
*

G. Sharath

*Department of Studies in Mathematics, University of Mysore
Manasagangotri, Mysore-570 006, India
*

K. R. Rajanna

*Department of Mathematics, MVJ College of Engineering
Channasandra, Bangalore-560 067, India
*

### Abstract

In this paper, we give an alternative and simple proof of certain identities of Ramanujan—Göllnitz—Gordon continued fraction.

### Keywords

- Continued fraction
- Theta functions

### AMS Classification

- 11A55
- 33D10

### References

- Andrews, G. E. On
*q*-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. (Oxford), Vol. 19, 1968, 433–447. - Baruah, N. D., J. Bora, N. Saikia, Some new proofs of modular relations for the Göllnitz—Gordon functions, The Ramanujan J., Vol. 15, 2008, 281–301.
- Berndt, B. C. Ramanujan Notebooks, Part III. Springer-Verlag. NewYork, 1991.
- Chan, H. H., S. S. Huang, On the Ramanujan—Göllnitz—Gordon continued fraction, The Ramanujan J., Vol. 1, 1997, 75–90.
- Chen, S. L., S. S. Huang. New Modular Relations for the Göllnitz—Gordon Functions. J. Number Theory, Vol. 93, 2002, 58–75.
- Cho, B., J. K. Koo, Y. K. Park. Arithmetic of the Ramanujan—Göllnitz—Gordon continued fraction, J. Number Theory, Vol. 4 (129), 2009, 922–947.
- Gordon, H. Some continued fractions of the Rogers–Ramanujan type, Duke Math. J., Vol. 32, 1965, 741–748.
- Göllnitz, H. Partition mit Diffrenzebedingungen, J. Reine Angew. Math., Vol. 25, 1967, 154–190.
- Huang, S. S. On Modular Relations for the Göllnitz—Gordon Functions with Applications to Partitions, J. Number Theory, Vol. 93, 2002, 58–75.
- Ramanujan, S. Notebooks (2 volumes), Tata Institute of fundamental Research, Bombay, 1957.
- Ramanujan, S. The “Lost” Notebook and other unpublished papers, Narosa, New Delhi, 1988.
- Vasuki, K. R., B. R. Srivasta Kumar. Certian identities for Ramanujan—Göllnitz—Gordon continued fraction, J. Comp. and Appl. Math., Vol. 187, 2006, 87–95.
- Vasuki, K. R., B. R. Srivasta Kumar, Evaluations of the Ramanujan—Göllnitz—Gordon continued fraction H(q) by modular equations, Indian J. Math., Vol. 48, 2006, No. 3, 275–300.

## Related papers

## Cite this paper

APAVasuki, K. R., Sharath, G., & Rajanna, K. R. On some identities of Ramanujan—Göllnitz—Gordon continued fraction, Notes on Number Theory and Discrete Mathematics, 17(4), 50-60.

ChicagoVasuki, K. R., G. Sharath, and K. R. Rajanna. “On Some Identities of Ramanujan—Göllnitz—Gordon Continued Fraction.” Notes on Number Theory and Discrete Mathematics 17, no. 4 (2011): 50-60.

MLAVasuki, K. R., G. Sharath, and K. R. Rajanna. “On Some Identities of Ramanujan—Göllnitz—Gordon Continued Fraction.” Notes on Number Theory and Discrete Mathematics 17.4 (2011): 50-60. Print.