On some identities of Ramanujan—Göllnitz—Gordon continued fraction

K. R. Vasuki, G. Sharath and K. R. Rajanna
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 17, 2011, Number 4, Pages 37—41
Download full paper: PDF, 185 Kb

Details

Authors and affiliations

K. R. Vasuki
Department of Studies in Mathematics, University of Mysore
Manasagangotri, Mysore-570 006, India

G. Sharath
Department of Studies in Mathematics, University of Mysore
Manasagangotri, Mysore-570 006, India

K. R. Rajanna
Department of Mathematics, MVJ College of Engineering
Channasandra, Bangalore-560 067, India

Abstract

In this paper, we give an alternative and simple proof of certain identities of Ramanujan—Göllnitz—Gordon continued fraction.

Keywords

  • Continued fraction
  • Theta functions

AMS Classification

  • 11A55
  • 33D10

References

    1. Andrews, G. E. On q-difference equations for certain well-poised basic hypergeometric series, Quart. J. Math. (Oxford), Vol. 19, 1968, 433–447.
    2. Baruah, N. D., J. Bora, N. Saikia, Some new proofs of modular relations for the Göllnitz—Gordon functions, The Ramanujan J., Vol. 15, 2008, 281–301.
    3. Berndt, B. C. Ramanujan Notebooks, Part III. Springer-Verlag. NewYork, 1991.
    4. Chan, H. H., S. S. Huang, On the Ramanujan—Göllnitz—Gordon continued fraction, The Ramanujan J., Vol. 1, 1997, 75–90.
    5. Chen, S. L., S. S. Huang. New Modular Relations for the Göllnitz—Gordon Functions. J. Number Theory, Vol. 93, 2002, 58–75.
    6. Cho, B., J. K. Koo, Y. K. Park. Arithmetic of the Ramanujan—Göllnitz—Gordon continued fraction, J. Number Theory, Vol. 4 (129), 2009, 922–947.
    7. Gordon, H. Some continued fractions of the Rogers–Ramanujan type, Duke Math. J., Vol. 32, 1965, 741–748.
    8. Göllnitz, H. Partition mit Diffrenzebedingungen, J. Reine Angew. Math., Vol. 25, 1967, 154–190.
    9. Huang, S. S. On Modular Relations for the Göllnitz—Gordon Functions with Applications to Partitions, J. Number Theory, Vol. 93, 2002, 58–75.
    10. Ramanujan, S. Notebooks (2 volumes), Tata Institute of fundamental Research, Bombay, 1957.
    11. Ramanujan, S. The “Lost” Notebook and other unpublished papers, Narosa, New Delhi, 1988.
    12. Vasuki, K. R., B. R. Srivasta Kumar. Certian identities for Ramanujan—Göllnitz—Gordon continued fraction, J. Comp. and Appl. Math., Vol. 187, 2006, 87–95.
    13. Vasuki, K. R., B. R. Srivasta Kumar, Evaluations of the Ramanujan—Göllnitz—Gordon continued fraction H(q) by modular equations, Indian J. Math., Vol. 48, 2006, No. 3, 275–300.

    Related papers

    Cite this paper

    APA

    Vasuki, K. R., Sharath, G., & Rajanna, K. R. On some identities of Ramanujan—Göllnitz—Gordon continued fraction, Notes on Number Theory and Discrete Mathematics, 17(4), 50-60.

    Chicago

    Vasuki, K. R., G. Sharath, and K. R. Rajanna. “On Some Identities of Ramanujan—Göllnitz—Gordon Continued Fraction.” Notes on Number Theory and Discrete Mathematics 17, no. 4 (2011): 50-60.

    MLA

    Vasuki, K. R., G. Sharath, and K. R. Rajanna. “On Some Identities of Ramanujan—Göllnitz—Gordon Continued Fraction.” Notes on Number Theory and Discrete Mathematics 17.4 (2011): 50-60. Print.

    Comments are closed.