Aleksander Grytczuk and Izabela Kurzydło

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 17, 2011, Number 2, Page 12—17

**Download full paper: PDF, 170 Kb**

## Details

### Authors and affiliations

Aleksander Grytczuk

*Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Gora,
65-516 Zielona Gora, Poland*

Izabela Kurzydło

*Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Gora,
65-516 Zielona Gora, Poland*

### Abstract

In the paper [14] A. Schinzel and H. Zassenhaus posed the following conjecture: If *α* ≠ 0 is an algebraic integer of degree *n* which is not a root of unity, then there exists a constant *c *> 0 such that

where * α* = *α*_{1}; and *α*_{2}, …, *α _{n}* are the conjugates of

*α*.

In this paper we give some information concerning this conjecture. In the proofs of the theorems we use some spectral properties of matrices.

### Keywords

- Conjecture of A. Schinzel and H. Zassenhaus
- Spectral properties of matrices

### AMS Classification

- 11R04
- 15A42

### References

- P. E. Blanksby, H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971) 355-369.
- D. W. Boyd, The maximal modulus of an algebraic integer, Math. Comp. 45 (1985) 243-249.
- D. C. Cantor, E. G. Straus, On a conjecture of D. H. Lehmer, ibid. 42 (1982) 97-100.
- E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978) 291-292.
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979) 391-401.
- A. Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith. 63 (1993) 15-20.
- A. Grytczuk, M. Szalkowski, Spectral properties of some matrices, Acta Acad. Pead. Agriensis Sectio Math. 20 (1991) 43-50.
- P. Lankaster, Theory of matrices, Izd. Nauka, Moskwa (1978)(in Russian).
- D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933) 461-479.
- R. Louboutin, Sur la mesure de Mahler d’un nombre algebrique, C. R. Acad. Sci. Paris 296 (1983) 707-708.
- E. M. Matveev, On the cardinality of algebraic integers, Mat. Zametki 49 (1991) 152-154 (in Russian).
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN – Polish Scientific Publishers, Warszawa (1990).
- G. Rhin, Q.Wu, On the smallest value of the maximal modulus of an algebraic integer, Math. Comp. 76 (2007) 1025-1038.
- A. Schinzel, H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965) 81-85.
- L. Stewart, Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 196 (1978) 169-176.

## Related papers

## Cite this paper

APAGrytczuk, A., & Kurzydło, I. (2011). On some application of the spectral properties of the matrices. Notes on Number Theory and Discrete Mathematics, 17(2), 12-17.

ChicagoGrytczuk, Aleksander, and Izabela Kurzydło. “On Some Application of the Spectral Properties of the Matrices.” Notes on Number Theory and Discrete Mathematics 17, no. 2 (2011): 12-17.

MLAGrytczuk, Aleksander, and Izabela Kurzydło. “On Some Application of the Spectral Properties of the Matrices.” Notes on Number Theory and Discrete Mathematics 17.2 (2011): 12-17. Print.