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1 Introduction and main result

In [1, 2, 4], five different combined 3-Fibonacci sequences have been introduced so far.
Here, we continue this direction of research, introducing two new 3-Fibonacci sequences that

are different from the previous ones, thus further elaborating the series of extensions of the nature
of the Fibonacci sequence (see, e.g., [3]).

Let everywhere below, a, b, c, d, e be arbitrary real numbers.
The first newly introduced sequence has the form:

α0 = 2a, β0 = 2b, γ0 = c, α1 = 2d, β1 = 2e

and for each natural number n ≥ 1:
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αn+1 = αn + αn−1,

βn+1 = βn + βn−1,

γn+1 =
αn + βn

2
+ γn.

The first values of sequences {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are given in the following Table 1.

n αn γn βn

0 2a 2b

0 c

1 2d 2e

1 a+ b+ c

2 2a+ 2d 2b+ 2e

2 a+ b+ c+ d+ e

3 2a+ 4d 2b+ 4e

3 2a+ 2b+ c+ 2d+ 2e

4 4a+ 6d 4b+ 6e

4 3a+ 3b+ c+ 4d+ 4e

5 6a+ 10d 6b+ 10e

5 5a+ 5b+ c+ 7d+ 7e

6 10a+ 16d 10b+ 16e

6 8a+ 8b+ c+ 12d+ 12e

. . . . . . . . .

Table 1. The first values of sequences {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0

Let {Fn}∞n=0 be the standard Fibonacci sequence, where F0 = 0, F1 = 1, and Fn+2 = Fn+1 +

Fn for each natural number n ≥ 0.

Theorem 1. For each natural number n ≥ 1:

αn = 2Fn−1a+ 2Fnd,

βn = 2Fn−1b+ 2Fne,

γn = Fna+ Fnb+ c+ (Fn+1 − 1)d+ (Fn+1 − 1)e.

Proof. We can prove the Theorem, for example, by induction. For n = 1 and n = 2, the validity
of the Theorem is checked directly from the above table. Let us assume that the Theorem is valid
for some natural number n ≥ 2. Then:

αn+1 = αn + αn−1

= 2Fn−1a+ 2Fnd+ 2Fn−2a+ 2Fn−1d

= 2Fna+ 2Fn+1d.
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βn+1 = βn + βn

= 2Fn−1b+ 2Fne+ 2Fn−2b+ 2Fn−1e

= 2Fnb+ 2Fn+1e.

γn+1 =
αn + βn

2
+ γn

=
1

2
((2Fn−1a+ 2Fnd) + (2Fn−1b+ 2Fne)) + Fna+ Fnb+ c+ (Fn+1 − 1)d

+ (Fn+1 − 1)e

= Fn−1a+ Fnd+ Fn−1b+ Fne+ Fna+ Fnb+ c+ (Fn+1 − 1)d+ (Fn+1 − 1)e

= Fn+1a+ Fn+1b+ c+ (Fn+2 − 1)d+ (Fn+2 − 1)e.

The remaining formulas are checked by analogy.

The second sequence introduced herewith has the form:

α0 = a, β0 = b, γ0 = c, α1 = 2d, β1 = 2e

and for each natural number n ≥ 1:

αn+1 = αn + αn−1,

βn+1 = βn + βn−1,

γn+1 =
αn+1 + βn+1

2
+ γn.

The first values of sequences {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are given in the following Table 2.

n αn γn βn

0 2a 2b

0 c

1 2d 2e

1 c+ d+ e

2 2a+ 2d 2b+ 2e

2 a+ b+ c+ 2d+ 2e

3 2a+ 4d 2b+ 4e

3 2a+ 2b+ c+ 4d+ 4e

4 4a+ 6d 4b+ 6e

4 4a+ 4b+ c+ 7d+ 7e

5 6a+ 10d 6b+ 10e

5 7a+ 7b+ c+ 12d+ 12e

6 10a+ 16d 10b+ 16e

6 12a+ 12b+ c+ 20d+ 20e

. . . . . . . . .

Table 2. The first values of sequences {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0
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Theorem 2. For each natural number n ≥ 1:

αn = 2Fn−1a+ 2Fnd,

βn = 2Fn−1b+ 2Fne,

γn = Fna+ Fnb+ c+ (Fn+1 − 1)d+ (Fn+1 − 1)e.

2 Conclusion

Here, two new combined 3-Fibonacci sequences from a new type were introduced and explicit
formulas for their members are given.

Other new schemes, modifying the standard form of the 2- and 3-Fibonacci sequences and the
above two sequences, will be discussed in future.
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