Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2022, Volume 28, Number 1, Pages 143–146 DOI: 10.7546/nntdm.2022.28.1.143-146

On two new combined 3-Fibonacci sequences. Part 3

Krassimir T. Atanassov^{1,2}

¹ Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

² Intelligent Systems Laboratory Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria

Received: 18 December 2021 Accepted: 19 March 2022 Revised: 12 March 2022 Online First: 22 March 2022

Abstract: Two new combined 3-Fibonacci sequences are introduced and the explicit formulae for their *n*-th members are given.

Keywords: Fibonacci sequence, 3-Fibonacci sequence.

2020 Mathematics Subject Classification: 11B39.

1 Introduction and main result

In [1,2,4], five different combined 3-Fibonacci sequences have been introduced so far.

Here, we continue this direction of research, introducing two new 3-Fibonacci sequences that are different from the previous ones, thus further elaborating the series of extensions of the nature of the Fibonacci sequence (see, e.g., [3]).

Let everywhere below, a, b, c, d, e be arbitrary real numbers.

The first newly introduced sequence has the form:

 $\alpha_0 = 2a, \quad \beta_0 = 2b, \quad \gamma_0 = c, \quad \alpha_1 = 2d, \quad \beta_1 = 2e$

and for each natural number $n \ge 1$:

$$\alpha_{n+1} = \alpha_n + \alpha_{n-1},$$

$$\beta_{n+1} = \beta_n + \beta_{n-1},$$

$$\gamma_{n+1} = \frac{\alpha_n + \beta_n}{2} + \gamma_n$$

The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are given in the following Table 1.

n	α_n	γ_n	β_n
0	2a		2b
0		С	
1	2d		2e
1		a + b + c	
2	2a + 2d		2b + 2e
2		a+b+c+d+e	
3	2a + 4d		2b + 4e
3		2a + 2b + c + 2d + 2e	
4	4a + 6d		4b + 6e
4		3a + 3b + c + 4d + 4e	
5	6a + 10d		6b + 10e
5		5a + 5b + c + 7d + 7e	
6	10a + 16d		10b + 16e
6		8a + 8b + c + 12d + 12e	

Table 1. The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$

Let $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence, where $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_{n+1} + F_n$ for each natural number $n \ge 0$.

Theorem 1. For each natural number $n \ge 1$:

$$\begin{aligned} \alpha_n &= 2F_{n-1}a + 2F_nd, \\ \beta_n &= 2F_{n-1}b + 2F_ne, \\ \gamma_n &= F_na + F_nb + c + (F_{n+1} - 1)d + (F_{n+1} - 1)e. \end{aligned}$$

Proof. We can prove the Theorem, for example, by induction. For n = 1 and n = 2, the validity of the Theorem is checked directly from the above table. Let us assume that the Theorem is valid for some natural number $n \ge 2$. Then:

$$\alpha_{n+1} = \alpha_n + \alpha_{n-1}$$

= $2F_{n-1}a + 2F_nd + 2F_{n-2}a + 2F_{n-1}d$
= $2F_na + 2F_{n+1}d$.

$$\begin{split} \beta_{n+1} &= \beta_n + \beta_n \\ &= 2F_{n-1}b + 2F_ne + 2F_{n-2}b + 2F_{n-1}e \\ &= 2F_nb + 2F_{n+1}e. \\ \gamma_{n+1} &= \frac{\alpha_n + \beta_n}{2} + \gamma_n \\ &= \frac{1}{2}((2F_{n-1}a + 2F_nd) + (2F_{n-1}b + 2F_ne)) + F_na + F_nb + c + (F_{n+1} - 1)d \\ &+ (F_{n+1} - 1)e \\ &= F_{n-1}a + F_nd + F_{n-1}b + F_ne + F_na + F_nb + c + (F_{n+1} - 1)d + (F_{n+1} - 1)e \\ &= F_{n+1}a + F_{n+1}b + c + (F_{n+2} - 1)d + (F_{n+2} - 1)e. \end{split}$$

The remaining formulas are checked by analogy.

The second sequence introduced herewith has the form:

$$\alpha_0 = a, \quad \beta_0 = b, \quad \gamma_0 = c, \quad \alpha_1 = 2d, \quad \beta_1 = 2e$$

and for each natural number $n\geq 1$:

$$\alpha_{n+1} = \alpha_n + \alpha_{n-1},$$

$$\beta_{n+1} = \beta_n + \beta_{n-1},$$

$$\gamma_{n+1} = \frac{\alpha_{n+1} + \beta_{n+1}}{2} + \gamma_n$$

The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are given in the following Table 2.

n	α_n	γ_n	β_n
0	2a		2b
0		С	
1	2d		2e
1		c + d + e	
2	2a+2d		2b + 2e
2		a+b+c+2d+2e	
3	2a+4d		2b + 4e
3		2a + 2b + c + 4d + 4e	
4	4a + 6d		4b + 6e
4		4a + 4b + c + 7d + 7e	
5	6a + 10d		6b + 10e
5		7a + 7b + c + 12d + 12e	
6	10a + 16d		10b + 16e
6		12a + 12b + c + 20d + 20e	

Table 2. The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$

Theorem 2. For each natural number $n \ge 1$:

$$\begin{split} &\alpha_n = 2F_{n-1}a + 2F_nd, \\ &\beta_n = 2F_{n-1}b + 2F_ne, \\ &\gamma_n = F_na + F_nb + c + (F_{n+1} - 1)d + (F_{n+1} - 1)e. \end{split}$$

2 Conclusion

Here, two new combined 3-Fibonacci sequences from a new type were introduced and explicit formulas for their members are given.

Other new schemes, modifying the standard form of the 2- and 3-Fibonacci sequences and the above two sequences, will be discussed in future.

References

- [1] Atanassov, K. (2018). On two new combined 3-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 24(2), 90–93.
- [2] Atanassov, K. (2018). On two new combined 3-Fibonacci sequences. Part 2. *Notes on Number Theory and Discrete Mathematics*, 24(3), 111–114.
- [3] Atanassov, K., Atanassova, V., Shannon, A., & Turner, J. (2002). *New Visual Perspectives on Fibonacci Numbers*. World Scientific, New Jersey.
- [4] Atanassov, K., & Shannon, A. (2016). Combined 3-Fibonacci sequences from a new type. *Notes on Number Theory and Discrete Mathematics*, 22(3), 5–8.