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Abstract: This note considers some real and complex extensions and generalizations of the 

Leonardo sequence, which is embedded within each of these two types of intriguing sequences, 

intriguing because there are still some unanswered questions. The connections between 

inhomogeneous and homogeneous forms are used as examples of a possible reason that the 

Leonardo sequences have been, in a sense, historically neglected. 
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1 Introduction 

Leonardo sequences satisfy a second order inhomogeneous linear recurrence relation of the form 

  
1 2n n na a a n    , 2,n    (1.1) 

with 
0a   

1a = 1, [10]. A revival of interest in these Leonard Fibonacci sequences seems to have 

been initiated by the paper from Paula Catarino and Anabela Borges [2]. There was also some 

passing attention in the early days of the Fibonacci Association [7] in order to emphasize the 

genius of Leonard Fibonacci, but for the most part it was a case of converting nonhomogeneous 

second order forms into higher order homogeneous forms, such as when n = 1, the second order 
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Equation (1.1) can be converted to the third order linear homogeneous form 
1 32 ,n n nb b b    as 

in the corresponding row of Table 1 below. This possibly accounts for the relative dearth of 

number theory specifically about Leonardo sequences per se. 

When 
0a   

1a = 0, we get the last row in the array in Table 2 below.  Deveci [3] has considered 

links to the variation 

   1 2 1
n

n n na a a     , 2.n   (1.2) 

The ultimate aim of this particular note is to consider further generalizations and extensions, 

including 

  1 2 ( 1) ,n

n n na a a j      2n  , 0,j   (1.3) 

and 

  
1 2 ( )n n na a a n j     , 2.n   (1.4) 

2 Examples of Equation (1.3)  

A collection of generalized Leonardo sequences assembled from Equation (1.3) are set out in 

Table 1. These actually include the well-known standard Fibonacci and Leonardo sequences. 

 

n → 

j↓ 
0 1 2 3 4 5 6 7 8 Comments 

0 1 1 2 3 5 8 13 21 34 Fibonacci 

1 1 1 3 5 9 15 25 41 67 Leonardo 

2 1 1 4 3 9 10 21 29 52 Red = no 

systematic 

difference 

patterns 

3 1 1 5 3 11 11 25 33 61 

4 1 1 6 3 13 7 24 27 55 

5 1 1 7 3 15 13 33 41 79  

6 1 1 8 3 17 14 37 45 88  

7 1 1 9 3 19 15 41 49 97  

8 1 1 10 3 21 16 45 53 106  

9 1 1 11 3 23 17 49 57 115  

10 1 1 12 3 25 18 53 61 124  

Differences 0 0 1 0 2 1 4 4 9  

Table 1. Generalized Leonardo sequences 

Do the differences in the last row of Table 1 have two sequences embedded within them, 

namely, {0, 1, 1, 4, 9, …} and {0, 0, 1, 4, …}? If so, do the other rows, and why? 
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3 Examples of Equation (1.4)  

Another collection of extended Leonardo sequences can also then be built from Equation (1.4) 

1 2 ( )n n na a a n j     , 2,n   

and the first few can be represented in the array in Table 2. 

 

n → 

j↓ 
0 1 2 3 4 5 6 7 8 OEIS 

–2 1 1 1 2 4 8 15 27 47 A000126 

–1 1 1 2 4 8 15 27 47 80 A000071* 

0 1 1 3 6 12 22 39 67 113 A066982 

1 1 1 4 8 16 29 51 87 146 A030119 

2 1 1 5 10 20 36 63 107 179 A210677 

3 1 1 6 12 24 43 74 127 212 A210678 

Differences 0 0 1 2 4 7 12 20 33 A000071 

Table 2. Extended Leonardo sequences 

In the row * where j = –1, the differences between the elements within the row follow the 

pattern {Fn – 1} ≡ {0, 1, 2, 4, 7, 12, 20, 33, …}. It is trivial, but tedious, to establish that the 

elements of Table 2 also satisfy the fourth order linear homogeneous recurrence relation 

  
1 2 3 43 2 ,   4,n n n n na a a a a n         (3.1) 

which is another example of the nonhomogeneous case being turned into a homogeneous 

equivalent.  

Next we define the complex-type Leonardo sequence by the following homogeneous linear 

recurrence relation as another type of extension 

       
1 2 ,   2,

i i i n

n n na ia a i n      (3.2) 

with    
0 11, 0,  1.
i i

i a a     

By mathematical induction on n, we obtain the following related results: 

 if n is even, then  

      
1 1Re( ) (Re( ) Im( ))

i i i

n n na a a     

and 
     

1 2Im( ) (Re( ) Im( ))
i i i

n n na a a   ;  

 if n is odd, then  
     

1 2Re( ) (Im( ) Re( ))
i i i

n n na a a     

and 
     

1 1Im( ) Re( ) Im
i i i

n n na a a   . 
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We now use the particular Leonardo sequence {bn} (Equations (3.3) and (4.2) below), which 

satisfies 

1 2 1,n n nb b b     

with initial terms b0 = 0, b1 = 1, so that the first few terms are {0, 1, 2, 4, 7, 12, 20, 33, …}. We 

will return to {bn} later. We can now obtain by induction that 
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for 0,n   where Fn and Ln (second and third rows of Table 1) are the n-th Fibonacci and Leonardo 

numbers, respectively. Now we have 

   
Re( ) Im( )

i i

n n nb a a   

for 0,n  and by using the sequence {bn}, we find the following relationships among the elements 

of the sequences Fn and Ln: 

 1 1n nb F     for 0n  , 

 1n n nL b F   for 1n   

and so 

  4 4 2 ,  0.n n n nL b b b n       (3.3) 

4 Other connections 

Not surprisingly, there are also some other connections with and among various combinations of 

the Fibonacci and Lucas numbers; see, for example, A081659, A000071 and A066982 [11]. 

Riordan has dealt with some of these sequence connections from a combinatorial position [9], 

and Jarden [6] has also considered them from the point of view of the following variation of the 

Leonardo equation related to Equation (1.2) above: 

  1 2 1n n na a a   , 2,n   (4.1) 

and the associated third order linear recurrence 

  1 32n n nb b b   , 3,n   (4.2) 
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to which both the A000071 sequence and the Leonardo sequence conform, the difference between 

these two sequences being the Fibonacci sequence itself. In fact, Jarden considers the sequences 

in Table 3 which can bring out the corresponding analogies with the Fibonacci and Lucas 

sequences. 

(+1) 0 1 2 3 4 5 6 7 8 

nu  1 0 0 1 2 4 7 12 20 

nv  1 0 2 3 6 10 17 28 46 

          

(1) 0 1 2 3 4 5 6 7 8 

nU  1 2 2 3 4 6 9 14 22 

nV  3 2 4 5 8 12 19 30 48 

Table 3. Jarden’s examples of Equation (4.1) 

Among other properties, we then have respectively 

1 1 1n n nv u u     and 1 1 1.n n nV U U     

Other properties can be built with combinations of these sequences by analogy with those in 

Lucas [8] from  

2n nU u   and 2n nV v  . 

5 Concluding comments 

Dijkstra [4], a recipient of the Turing Award in 1972 from the Association for Computing 

Machinery, extended and generalized the Leonardo numbers with his two sequences  nH  and 

 nK  and the Leonardo-like format of their recurrence relations  

  1 2 ( )n n n nH H H F    , 1,n   (5.1) 

and 

  1 2 ( 1)n n n nK K K L     , 1,n   (5.2) 

with initial conditions 0 1, H    
1 1, H   0 0, K  1 0,K   and where nF  and  nL represent the 

Fibonacci and Leonardo numbers respectively. For comparisons, the first few terms of these 

‘Leonardo’ sequences are set out in Table 4. 

 

n 0 1 2 3 4 5 6 7 8 

nH  1 1 0 2 7 14 29 56 106 

nK  0 0 2 6 16 30 60 114 214 

nL  1 1 3 5 9 15 25 41 67 

Table 4. Leonardo-type sequences 

https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
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Further developments could also include generalizing and expressing Equations (1.3) and (1.4) 

in terms of their Horadam extensions [5] by applying Asveld’s techniques [1] to the sequence 

{wn} defined by 

  1 2

0

( 1)
k

j
n n n j

j

w pw qw p q n 



      , (5.3) 

and appropriate initial conditions, and in which p and q are non-zero arbitrary integers.  
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