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Abstract: Let n and k be two positive integers and let A be a set of positive integers. We
define t4(n, k) to be the number of partitions of n with exactly k sizes and parts in A. As an
implication of a variant of Newton’s product-sum identities we present a generating function for
ta(n, k). Subsequently, we obtain a recurrence relation for ¢ 4(n, k) and a divisor-sum expression
for ta(n, 2). Also, we present a bijective proof for the latter expression.
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1 Introduction and statement of results

Let n be a positive integer. By a partition of n we mean a finite unordered sequence of positive
integers, say m = (a1, asg, . .., Gy ), such that a; + as + - - - + a,, = n. The ;s are called the parts
of the partition 7, and each element in the (multi) set {aq, as, . .., a,,} is called a size of 7.

The number of partitions of n with parts restricted to a set of positive integers was considered
by Sylvester. The generating function of this enumeration and various modes of evaluating its
exact expressions were presented in a classical text book by J. Riordan [5].

In this note we are concerned with the partitions which satisfies the following conditions:

1. parts restricted to a set of positive integers,

2. the number of sizes is restricted to £, a positive integer.

The formal definition of its enumeration is given below.
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Definition 1.1. Letr n and k be two positive integers. Let A be a set of positive integers. We define
ta(n, k) to be the number of partitions of n with exactly k sizes and parts from the set A.

The function ty(n, k) has been investigated by many authors [2-4]. In this note, we obtain a
generating function for ¢ 4(n, k). The sum of product form of this generating function allows us
to apply a variant of Newton’s product-sum identity in order to obtain a recurrence relation for
ta(n, k). We then confine to the case k = 2 and obtain a divisor-sum expression for ¢ 4(n, 2).

Following is the variant of Newton’s product-sum identities which plays a vital role in obtaining
a recurrence relation for ¢ 4(n, k).

Lemma 1.2. Let ) | ¢, be a converging series of real numbers with c,, > 0. Define

So =1,
Sk = E Ci1 Ciy * * * Gy,
{i1,..,ip JCN

and
o0
_ Z k
j=1

forevery k € N. If | P;| < oo for every k € N, then we have
(1) (k +1)Sks1 = —(Pep1So — PeSi + -+ + (=1)F P1S)). (1)

Now we list the main results of this note. Proof of these results are provided in the next
section.
Theorem 1.3. Let k be a positive integer and let A be a set of positive integers. We have

a; a;

s i1 1%k
t Bk = ) 2
; a(n, k)x Z T T 2)

{ail sy Qg }gA

Using this generating function we will get the following recurrence relation for ¢ 4(n, k).

Theorem 1.4. Let k be a positive integer and let A be a set of positive integers. We have

(D" (k+ Dta(n, k+1) = =7a(n, bk + 1) + > (=1 raln b+ 1 —7) s ta(n,r), (3)

r=1
where x denotes the convolution operator given by

n—1

(9% f)(n) = g(k)f(n k)

k=1
and TA(n, k) is defined by
d—1 n
b =3 (121 (3).
2k

where x a(n) denotes the characteristic function of A.
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As an immediate consequence of Theorem 1.4, we have the following result.

Corollary 1.5 (G. E. Andrews [1]). Let n > 2 be a positive integer. We have

i) = T BT = B) ot + ) "

where T(n) (respectively, o(n)) denotes the number of (respectively, sum of) positive divisors
of n.

Definition 1.6. Let n be positive integer and let A be a set of positive integers. We define 74(n)

to be the number of divisors of n such that each divisor is from the set A. In notation,

Ta(n) => 1. (5)

din
deA

Next we have a generalisation of the Corollary 1.5.
Theorem 1.7. Let n be a positive integer and let A be a set of positive integers. Then we have
Sohmy Tak)Ta(n = k) = 3 g § + 7a(n)

deA

(6)

2 Generating function and a recurrence for t 4 (n, k)

For the sake of completeness, we present a proof for Lemma 1.2. Our proof is a simple variant of
D. Zeilberger’s combinatorial proof [6].

2.1 Proof of Lemma 1.2
Fix k + 1 € N. Consider the set of ordered pairs, (A, j'), denoted o7 (k + 1), where
(i) Aisasubset of N with |A| <k + 1, where |A| denotes the number of elements of A,
(i1) j is a member of N,
(i) |[A|+1=Fk+1,
(iv) [ > 0andif [ =0, then j € A.
Define the weight of (A, j'), denoted w(A, j'), by

w(A, ) = (=) (Hca) ch.

We aim at proving the following identity

k
> (1) Py + (1) (k + 1)Spar = 0. (7)

1=0
To that end, we will show that the left-hand side sum of the equation above equals the sum of all
the weights of elements of <7 (k + 1).
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Case i. When |A| =0, wehave [ =k + 1, j € Nand

While summing the term above over j € N, we have

S u(a ) = Yo
j=1 J=1
= P

Caseii. Assume 1 < |A| < k.Thenl1 <[ <kandj€N.
Let r = |A|. We have

w(A,jl) _ (_1)7" (H Ca) C§-k+1)_r.

a€A

Taking sum over the subsets A C N having |A| = r, we have

D w(A ) = (=1) 8,
ACN
|Al=r

Now taking sum over j € N, we have

SN w(A ) = (=18, Y

JEN AC JEN
|Al=r

- (—1>TSTP(]€+1)_T.

Case iii. Assume |A| = k + 1. Then/ = 0 and j € A. We have

w(A, ) = (=1)+ (H oa) &
= (—1)k+! (H C’a) .

acA

Taking summation over j € A, we have

jEA acA

Now taking summation over A having |A| = k + 1, we have

S wA ) = () k) Y (Hca

acA

jeEA ACN ACN
|Al=k+1 |Al=k+1
= (=" (k4 1)Sk41.

This completes the claim.
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Define T': &/ (k+ 1) — </ (k + 1) by

T(A,j) = (AN{7}J™Y), G eA,
| (AU}, j €A

One can verify the following properties:
@) w(T((4,4)) = —w((4,j),
(b) T(T((A,5')) = (A, j").
The above two observations lead to the conclusion that, if we take the sum over the terms
w(T((A, 7)) +w(A, ') =0,

then we will get the sum on the left-hand side of (7) as zero. Now the proof is completed.

2.2  Proof of Theorem 1.3

Fix k € N. Let {a;,, ..., a;_} be a subset of A. Define
...... a;, (1) = #{partitions of n having exactly k sizes, namely, a;,, ..., a;,}

and

.....

.1 1
Zp{ail """ ai’“}(n)x Tl g 1— g%
n=0

Let (by,...,bs) be a partition of n with parts from the set {a;,, ..., a;_}. Then the mapping

(bl,...,bs)—> (bl,...,bs,ail,...,aik)

establishes a one-to-one correspondence between the following sets:

(i) the set of all partitions of n with parts from the set {a;,, ..., a; }
(i) the set of all partitions of n + a;, + - - - + a;, having k sizes, namely, a;,, ..., a;,.
That is

R{ail ..... alk}<n + ail + tee + alk> == p{ail ..... alk}(n)

Whence, we have

00
E m __ E n+a;, +--+a;,
R{azl ~~~~~ azk}(m)x - R{azl 77777 azk}(n + ail +oeee aik)m ‘1 b
m>a;, +-Faq, n=0
00
— n+aq, +-+a;
= Y Plasy oy ()b
n=0
)
Q4 tay n
x 'k § :p{ail 77777 aik}(n)x
n=0
% %k
1% 1 —a%
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Since

tA(TL, k’) = Z R{ai1 ,,,,, aik}(n)v

{aiyssai), JCA
n>a; ++a;,

we have

Z ta(n, k)x" = Z Ria,. ... aik}(n)x” 8)

n=1 {ail ..... aik }QA

n>a;, ++a;,

%1 %

Z 1 — %1 1_Iaik7 ( )

{ai17-'~7aik}gA
which is the desired end. O

2.3 Proof of Theorem 1.4

The above sum-of-product form of generating function is suitable for applying Lemma 1.2 in
deriving a recurrence relation for the function ¢ 4(n, k).
Define

xn

Cn(x) = 1—zxn
0, otherwise.

, ifn € A,

Define Sy = 1. For » > 1, define

1—az% 11— g%
{aiy,ai JCA
o
= Z ta(n,r)x"
n=1

Define

Then we have




:g ; ((d—rzirgr—l)) o
dn

n
LeA

[e.9]
= Z Ta(n,r)z".
n=1

Then Lemma 1.2 gives

(=1 (k + 1)Spia(2) = =Pra(2) + ) _(=1)" Peyrr(2) S, ().

r=1

Now substituting the series expansion of S,.(x) and P,(z) in the identity above and equating the
coefficients of like powers of = on both sides gives the recurrence relation of Theorem 1.4. [

3 Divisor-sum expression for ¢ 4 (n, 2)

In this section we provide two proofs for Theorem 1.7. First proof is based on Theorem 1.4, and
the second proof is based upon a correspondence between the partitions of n having exactly two
distinct sizes and the divisors of n — ta which are different from a, with a varying over A and
t € Nsuchthatn — ta > 1.

3.1 Proof of Theorem 1.7 using Theorem 1.4

If we fix k£ = 2 then Theorem 1.4 gives

n—1
2ta(n,2) = = Y (d = Dxa (5) + D Talk)7aln = k)
din k=1
n n—1
==Y (5-1) @+ Y ratk)aln— k)
%\n k=1
n n—1
= — Z <E — 1) + ZTA(k)TA(n — k)
deA k=1
d|n
n n—1
=-> o+ 7a(n) + > " ralk)Taln — k),
deA k=1
dln
which is the desired end. U

3.2 A bijective proof of Theorem 1.7

If there is a partition of n with two distinct sizes, say a and b, each from a set of positive integers,
say A. Then we can write n = ta + sb, where a,b € A witha # band t,s € N.
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The equality above can be written as
n — ta = sb. (10)

We observe that for a fixed a € A, we have b as a divisor of n — ta with b € A and b # a. While
varying t € N with n — ta > 1, we get the number of such divisors as

Z TA—{a} (n — ta).

teN
n—ta>1

Also, we observe that corresponding to each such divisor there is a partition of n with two distinct
sizes, namely, a and b.

Now, varying a over A and summing the expression above, we see that the terms ta and sb in
(10) will get commuted, and as the consequence we get

24(n,2) = Y Ta_(u(n—ta). (11)

teN
acA
n—ta>1

Now we observe that
Ta(n — ta) if a { n;

Ta_{ar(n —ta) =
o Ta(n —ta) —lifa | n.

This gives
n—1
E Ta—{a}(n — ta) = g Ta(n —ta) — g | |. (12)
teN teN acA a
acA acA aln
n—ta>1 n—ta>1

Fix k € {1,2,...,n — 1}. Consider the equality n — ta = k, where t € N and a € A. Then the
number of pairs, say (¢, a), satisfying this equality equals 74(n — k). In notation

Z 1 =7a(n—k).

teN
acA
n—ta=k
This gives
E Ta(n —ta) = g Ta(k)
teN teN
a€A acA
n—ta=k n—ta=k
=T1a(n — k)1a(k).
Consequently,

Z Ta(n — ta) ZTA Ta(n — k). (13)

teN

acA
n—ta>1

Also we observe that, if a | n and a € A, then we have ["~1] = |2 — 1| = 2 —1_ This gives the

a

S = ). (14)

acA acA
aln aln

relation
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If we substitute the right-hand side expression of (12) with values from (13) and (14), then
(11) gives the desired expression for ¢ 4(n, 2). O
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