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Abstract: We show that if a is a positive integer such that for each positive integer n, a + n? can
be expressed %+ yz, where x,y € Z, then a is a square number. A similar theorem also holds if
a + n? and 22 + y? are replaced by a + 2n? and 2 + 2y, respectively.
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1 Introduction

An integer a of the form n?, where n € Z, is called a square number. A simple characterization
of square numbers is the following.

Theorem 1.1. Let a be a positive integer. Let d(a) be the number of positive divisors of a. Then

a is a square number if and only if d(n) is odd.

Theorem 1.1 can be proved by looking at the prime factorization of a. Let a = p{*p5? - - - p»

be the prime factorization of a. Then d(a) = (ay + 1)(ag + 2) -+ (o, + 1). Of course, d(a) is
oddif and only if oy + 1, s + 1, ..., a, + 1 are odd, which is equivalent to oy, ao, ..., «, are
even. So, d(a) is odd if and only if a is a square number.

Another nice theorem for square numbers, a special case of the Grunwald—Wang theorem [2],
proved in [1, Theorem 3, pp. 57-58], states that

Theorem 1.2. Let a be a positive integer such that a is a square (mod p) for all but finitely many
prime numbers p. Then a is a square number.
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In this paper, we will prove the following theorems.

Theorem 1.3. Let a be a positive integer such that for each positive integer n, there exist integers

x,y such that a + n? = x? + y*. Then a is a square number.

Theorem 1.4. Let a be a positive integer such that for each positive integer n, there exist integers
x, y such that a + 2n® = 2 + 2y>. Then a is a square number.

For the rest of this paper, v,(z) denotes the highest power of a prime number p dividing =,
and (x/b) denotes the Jacobi symbol for odd integers b. See Rosen [1, Chapter 5] for the basic
properties of Jacobi symbols.

2 Proof of Theorem 1.3

Case 1. a is odd. We will show that if p is a prime divisor of a, then v,(a) is even. Assume by
contrary that v,(a) is odd. Then a = p* ™10, where r € N, b € Z* with p { b.

If p = 3 (mod 4), let z,y € Z such that a + p**? = z? 4+ y*. Since (—1/p) = —1 and
vo(a) = 2r +1 < 2r + 2, we have p’*!|x and p’*!|y. Therefore, p?" 2|22 + 32 — p>*2 = q,
impossible. Therefore, p = 1 (mod 4). So if p is a prime divisor of a with 2 1 v,(a), then
p =1 (mod 4). Therefore, a = 1 (mod 4).

Since a is not a square number, then from Theorem 1.2, there exists an odd prime ¢ such that

(a/q) = —1. Hence,
DY (%) (@14 _ _
(a) B <q> (=1 =t M)

Let a = 4a; + 1, where a; € N. Since ged(a,a1) = (a,q) = 1 and 2 t a, we have
ged(3a — 4ayq, 4a) = 1. Therefore, the set of prime numbers P such that

P =3a—4a1q (mod 4a) (2)

is infinite by Dirichlet’s Theorem [1, Theorem 1, pp. 251]. From (2), we have

P
3)
P

3 (mod 4),
q (mod a).

From (1) and (3) we have
Hence,

Therefore,

(7)-cr i)

Thus, there exists s € N such that a + s> = 0 (mod P). We can assume further that
0<s<(P-1)/2. If wetake P > 4a, then a+s*> < P2 Let z, w € Z such that a+s* = 2% +w?.
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From (3) we have P = 3 (mod 4). Since Pla + s* = 2% + w?, we have P|z and P|w. Thus,
P?|22 4+ w? = a+ s%, impossible since 0 < a+ s* < P2 Therefore, 2|v,(a) for all prime divisors
p of a. Thus, a is a square number.

Case 2. a is even. Let a = 2¥b, where k,b € Z*+ and 2 { b.

e fkisodd. Let £ = 2m + 1, where m € N. For each positive integer n, there exist z,y € Z
such that a + (2™%1n)? = 2% + 3. Hence, 2210 + 22m+2p2 = 22 4 ¢2. Therefore, 2™ |z
and 2" |y. Let u = /2™ and y = y/2™. Then u,v € Z and

2b + 4n? = u? 4+ v?. 4)
In (4), let n = 4. Then 2b + 16 = u? + v, Since 2 1 b, we have 2 { v and 2 { v. Hence,
2b =u* +v* =2 (mod 8).

Therefore, b = 1 (mod 4). In (4), let n = 1, then 2b + 4 = u? + v, where uy,v; € Z,
impossible since 2b + 4 = 6 (mod 8) and u? + v? =2 (mod 8).

e [ is even. Let k = 2m, where m € Z*. Then for each positive integer n, there exist
integers x, y such that 220 + (2™n)? = 22 + y*. Hence, 4™|z* + y>. Therefore, 2|z and
2™y. Letu = /2™ and v = y/2™. Then u,v € Z and

b+ n?=u?+ 02

From Case 1, b is a square number. Hence, n = 2™} is a square number.
The proof is complete. O

3 Proof of Theorem 1.4

Case 1. a is odd. Let p be a prime divisor of a. We will show that v,(a) is even. Assume that
vp(a) is odd. Then v,(a) = 2m + 1, where m € N. Then there exist x, y € Z such that

2p*" 2 4 a = 2% + 22 (5)

e p = —1,5 (mod 8). Then (—2/p) = —1, see [1, Proposition 5.1.3, p. 53] for a proof.
From (5), we have p™ |z and p™|y. Thus p?"2|2% + y* — 2p*™*2 = q, impossible.

e p = 1,3 (mod 8). This is true for all prime divisors of a. Hence, a = 1, 3 (mod 8).
Since a is not a square number, from Theorem 1.2, there exist infinitely many odd prime

(9) - 1. (6)
q

numbers ¢ such that

77



Letr € {3, 7}.

Let a = 8k + ¢, where k € Nand € € {1,3}. Thenea =1 (mod 8). Let ca = 8] + 1, where
[ € N. Since ged(a,l) = ged(a,q) = 1 and 2 1 ag, we have ged(8a, rea — 8lq) = 1. Therefore,
by Dirichlet’s Theorem [1, Theorem 1, pp. 251], there exist infinitely many prime numbers P

such that
P =rea —8lqg (mod 8a).

Hence,
P =rea=r (mod8),
P =-8lg=q (mod a).

From (6) and (7), we have

Py _ <2> _ (—1)aen/a (@) 2 Ly,
a a q

From (8) we have

() (36

_ (_1)(P71)/2+(P2,1)/8 <_> (_1)(})71)(%1)/4
a

= (_1)(P—l)/2+(P2—1)/8+(P—1)(a—l)/4+1+(q—1)(a—1)/4‘

We want to find r such that (—2a/P) = 1, which is equivalent to
P—-1 P*-1 P—-1)(a—-1 —1)(a—1
LPoDe-1 | - Da-1)

=1 d2).
> T8 1 1 (mod 2)
If a =1 (mod 8), then (9) is equivalent to
P-1 P21
5 + T = 1 (mod 2).
Let r = 5. Then from (7), P = 5 (mod 8). Therefore,
P-1 P21
5 + T = 1 (mod 2).
If a = 3 (mod 8), then
P-1 P2-1 P-1 q¢q-1
LH = d2
S9) 5 + 3 + 5 + 5 (mod 2)
P? -1 -1
=—3 44 5 (mod 2).
If g =1 (mod 4), let r = 5. Then from (7), P = 5 (mod 8). Therefore,
P2—-1 ¢-1
=1 2).
g + 5 (mod 2)
If g =3 (mod 4), let r = 7. Then from (7), P = 7 (mod 8). Therefore,
P2—-1 ¢g-1
=1 2).
S + 5 (mod 2)
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Therefore, we can always choose r € {5, 7} such that there exist infinitely many prime
numbers P satisfying
P =r (mod 8),

P =q (moda), (10)

)

Let P be a prime number satisfying (10) and P > 4a. Let x be an integer such that

22 +2a=0 (mod P).

If 2|z, let s = 2/2. Then Pla + 2s>.

If2+z,letz; = |P— x| Then 2|x;. Let s = /2. Since P|2(a+2(z1/2)?), we have P|a + 2s>.
Therefore, there exists s € Z such that P|a + 2s?. We can assume 0 < s < (P — 1)/2. Let

z, w € Z such that a 4+ 2s? = 2% + 2w?. Then P|z* + 2w?. Since P =r =5, 7 (mod 8), we

have (—2/P) = —1. Therefore, P|z and P|w. Thus, P?|2% + 2w? = a + 2s?, impossible since

0<a+s*< P

Case 2. a is even. Let a = 2%b, where b,k € Z*+ and 2 1 b.

Case 2.1. k = 1. Then for each positive integer n, there exist z,y € Z such that 2b + 2n? =
x? + 2y*. Therefore, 2|x. Let z; = x/2. Then

b+n? =222 + 4% (11)

In (11), let n = 8. Then there exist u,v € Z such that b + 64 = 2u? + v2. Therefore,
2 {v. Thus
b=2>+1=1,3 (mod 8).

It follows from [1, Proposition 5.2, page 57] that

—2
(T) = 1. (12)

Let ¢; = b (mod 8), where ¢; € {1, 3}. Then ;b = 1 (mod 8). Let eb = 8[; + 1,
where [; € Z. Since ged(ly,b) = 1 and 2 1 bly, we have ged(8b, 5e,b + 161,) = 1.
Therefore, by Dirichlet’s Theorem [1, Theorem 1, pp. 251], there are infinitely many
prime numbers P such that

P =510+ 160; (mod 8b).
Thus,

P =16l; = -2 (mod b),
P =56b=5 (mod 8).

(13)

Let P be a prime satisfying (13) and P > 4b. Then from (12) and (13), we have
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(7)o ()

P P-1)(b—-1)/4
<€> (_1)( )(b=1)/
-2
(v
1.

)

Therefore, there exists s € N such that s < P/2 and P|b + s2. From (11), there exist
2, w € Z such that b+ s* = 2%+ 2w?. Since P =5 (mod 8), we have (—2/P) = —1.
Therefore, P|z and P|w. Hence, P?|b + s, impossible because 0 < s < P/2 and
b < P/4.

Case2.2. k> 1.

e kiseven. Let k = 2my, where m; € Z*. Then for each positive integer n, there
exist 7,y € Z such that 22™b + 22" +1p? = q + 2(2™n)? = 2? + 2y*. Therefore,
2™|x and 2™|y. Thus, b+2n? = u®+20v?, where u = 2/2™ € Zand v = y/2™ € Z.
Therefore, from Case 1, b is a square number. Hence a = 22™1) is a square number.

e kisodd. Let k = 2m; + 1, where m; € N. Then for each positive integer n, there
exist ¥,y € Z such that 221y 4 22mF1p2 = ¢ 4 2(2™n)? = x? + 2y2. Similar to
the case k is even, we will have b + n? = u? + 2v%, where u = x /2™ vav = y/2™,
which is impossible as proved in Case 2.1.

The proof is complete. U

4 An open question
The following case of the Grunwald—Wang theorem [2] is also proved in [1, pp. 220-221] via the
Eisenstein reciprocity law.
Theorem 4.1. Let a be an integer. Let | be an odd prime number, | 1 a. Suppose that
' =a (mod p)

has solutions (mod p) for all but finitely many prime numbers p. Then a is a perfect | power.

Question. Does there exist an elementary proof of Theorem 4.1?
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