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1 Introduction

The generalized bivariate r–Fibonacci polynomials were defined in [10] for r ≥ 1; see also [1]
as follows,

U r
n = xU r

n−1 + yU r
n−r−1, for n > r, (1)

with x, y are variables and boundary conditions U r
0 = 0, U r

k = xk−1 for 1 ≤ k ≤ r.
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For any integer 1 ≤ s ≤ r, Abbad et al. [1], defined the companion sequences family (V r,s
n )

related to the r-Fibonacci sequence (U r
n) as follows,

V r,s
n = xV r,s

n−1 + yV r,s
n−r−1, for n > r, (2)

with initial conditions V r,s
0 = s+ 1 and V r,s

k = xk for 1 ≤ k ≤ r.
For s = r we get the sequence studied by Tuglu et al. [10].

Remark 1.1.
• For s = 0, (V r,0

n ) is the shifted r-Fibonacci sequence (U r
n).

• For s = r, (V r,r
n ) is the bivariate r–Lucas sequence Lr,n .

A few terms of sequences (V r,s
n ) for r = 5 are given in Table 1 below.

s = 1 2, x, x2, x3, x4, x5, x6 + 2y, x7 + 3xy, x8 + 4x2y, x9 + 5x3y, . . .

s = 2 3, x, x2, x3, x4, x5, x6 + 3y, x7 + 4xy, x8 + 5x2y, x9 + 6x3y, . . .

s = 3 4, x, x2, x3, x4, x5, x6 + 4y, x7 + 5xy, x8 + 6x2y, x9 + 7x3y, . . .

s = 4 5, x, x2, x3, x4, x5, x6 + 5y, x7 + 6xy, x8 + 7x2y, x9 + 8x3y, . . .

s = 5 6, x, x2, x3, x4, x5, x6 + 6y, x7 + 7xy, x8 + 8x2y, x9 + 9x3y, . . .

Table 1. Terms of sequences (V r,s
n ) for r = 5

The companion sequences (V r,s
n ) generalize some classic sequences and polynomials given

in Table 2 below; see [10]

x y r Lr,n(x, y)

x y 1 bivariate Lucas polynomials Ln(x, y)
x 1 r Lucas r−polynomials Lr,n(x)
x 1 1 Lucas polynomials ln(x)
1 1 r Lucas r−numbers Lr(n)
1 1 1 Lucas numbers Ln
2x y r bivariate Pell–Lucas r-polynomials Lr,n(2x, y)
2x y 1 bivariate Pell–Lucas polynomials Ln(2x, y)
2x 1 r Pell–Lucas r-polynomials Qr,n(x)

2x 1 1 Pell–Lucas polynomials Qn(x)

2 1 1 Pell–Lucas numbers Qn

2x −1 1 Chebyshev polynomials of the first kind Tn(x)
x 2y r bivariate Jacobsthal–Lucas r-polynomials Lr,n(x, 2y)
x 2y 1 Bivariate Jacobsthal–Lucas polynomials Ln(x, 2y)
1 2y 1 Jacobsthal–Lucas polynomials jn(y)
1 2 1 Jacobsthal–Lucas numbers jn

Table 2. Classic sequences and polynomials generalized in terms of (V r,s
n )
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Definition 1.2. An n× n matrix An = (aij) is called a lower Hessenberg matrix if aij = 0 when
j − i > 1, i.e.,

An =



a11 a12 0 · · · 0

a21 a22 a23 · · · 0

a31 a32 a33 · · · 0
...

...
... . . . ...

an−1,1 an−1,2 an−1,3 · · · an−1,n

an,1 an,2 an,3 · · · an,n


. (3)

Theorem 1.3. [2] Let An be an n× n lower Hessenberg matrix for all n ≥ 1. Then,

det(A1) = a11

and for n ≥ 2

det(An) = an,n det(An−1) +
n−1∑
r=1

[
(−1)n−ran,r(

n−1∏
j=r

aj,j+1) det(Ar−1)

]
. (4)

Let A = (aij) be an n× n matrix. The permanent of A, written per(A), see [8], is defined by

per(A) =
∑
σ

n∏
i=1

aiσ(i),

where the summation extends over all elements σ of the symmetric group Sn.
It is easy to see that,

Remark 1.4. If An is a lower Hessenberg matrix defined in (3), then

det(An) = per(Bn). (5)

where Bn is defined as follows,

Bn =



a11 −a12 0 · · · 0

a21 a22 −a23 · · · 0

a31 a32 a33 · · · 0
...

...
... . . . ...

an−1,1 an−1,2 an−1,3 · · · −an−1,n

an,1 an,2 an,3 · · · an,n


.

The concept of representing recurrent sequences using special matrices is well known, in
particular the representation of the Fibonacci sequence and its generalizations attracted a lot of
attention in recent years.

In [7] generalized order k-Fibonacci numbers were represented as permanents of a (0,1)-matrix
with 1 in position (i, j) for i − 1 ≤ j ≤ k + i − 1 and 0 otherwise. Öcal et al. in 2005 [9]
expressed a family of generalized k-Fibonacci numbers as permanent and determinant of special
Hessenberg matrices. In [10], determinantal and permanental representations of generalized
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bivariate r-Fibonacci polynomials were established. In 2012, Kaygisiz and Sahin [6] used the
same approach and they gave determinantal and permanental representations of generalized
bivariate r-Lucas polynomials.

The aim of this paper is to give the determinantal and permanental representations of the
companion sequences family (V r,s

n ) related to the r-Fibonacci sequence. In the next section, we
give two types of order n Hessenberg matrices whose permanent and determinant are the n-th
term of the companion sequences family (V r,s

n ), therefore representations of classic sequences
and polynomials can be established by fixing parameters x, y, r and s. In Section 3, we use
techniques on the inverse of Hessenberg matrices and our representations introduced in Section 2
to produce n consecutive terms of (V r,s

n ) simultaneously. Such methods are more convenient
compared to the classical recurrent computation in terms of time since one can use properties of
Hessenberg matrix inverses along with fast algorithms provided in the literature for this type of
matrices; see for example [5], to get n terms of (V r,s

n ) simultaneously.

2 Main results

We give a determinantal representation of (V r,s
n ) as follows.

Theorem 2.1. Let (V r,s
n ) be the companion sequences family associated to the bivariate

r-Fibonacci polynomial and A(r,s)
n = (ajk) be an n× n lower Hessenberg matrix given by

ajk =



i, for j = k − 1;

x, for j = k;

iry, for r = j − k and k 6= 1;

(s+ 1)iry, for r = j − k and k = 1;

0, otherwise;

that is,

A(r,s)
n =



x i 0 · · · · · · · · · · · · 0

0 x i 0 · · · . . . · · · 0
... . . . . . . . . . . . . · · · · · · ...

0
. . . . . . . . . . . . · · · 0

(s+ 1)iry 0 · · · · · · x i 0 · · · 0

0 iry 0
. . . 0 x i

. . . 0
... . . . iry 0 · · · . . . . . . . . . 0

0 · · · . . . . . . . . . . . . . . . x i

0 · · · 0 iry 0 · · · . . . . . . 0 x



. (6)

Then for n ≥ 1,
det(A(r,s)

n ) = V r,s
n . (7)

where i2 = −1.
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Proof. We will prove Equation (7) by induction over n.
The result is true for n ∈ {1, . . . , r} by hypothesis.
For n = r + 1, we use Laplace expansion for the last row of A(r,s)

r+1 then,

det(A
(r,s)
r+1 ) = x det(A(r,s)

r )+ (s+1)iry det


i 0 0 · · · 0

x i 0 · · · 0
... x i · · · 0
... . . . ... . . . ...
0 · · · 0 x i

 = xr+1+(s+1)y = V r,s
r+1.

Assume now that (7) is true for all j ∈ {r + 2, . . . , n}. Then using Theorem 1.3, we have

det(A
(r,s)
n+1) = an+1,n+1 det(A

(r,s)
n ) +

n∑
p=1

[
(−1)n+1−pan+1,p(

n∏
j=p

aj,j+1) det(A
(r,s)
r−1 )

]

= x det(A(r,s)
n ) +

n−r∑
p=1

[
(−1)n+1−pan+1,p(

n∏
j=p

aj,j+1) det(A
(r,s)
r−1 )

]

+
n∑

p=n−r+1

[
(−1)n+1−pan+1,p(

n∏
j=p

aj,j+1) det(A
(r,s)
r−1 )

]

= x det(A(r,s)
n ) +

[
(−1)r(i)ry

n∏
j=n−r+1

i det(A
(r,s)
n−r )

]
= x det(A(r,s)

n ) +
[
(−1)ry(i)r.(i)r det(A(r,s)

n−r )
]

= x det(A(r,s)
n ) + y det(A

(r,s)
n−r ).

From the induction hypothesis and the definition of V r,s
n , we obtain

det(A
(r,s)
n+1) = xV r,s

n + yV r,s
n−r = V r,s

n+1.

Therefore, (7) holds for all positive integers n.

From Theorem 2.1 and Remark 1.4 we give the permanental representation as follows,

Theorem 2.2. Let (V r,s
n ) be the the companion sequences family associated to the bivariate

r-Fibonacci polynomial and B(r,s)
n = (bjk) be an n× n lower Hessenberg matrix defined by

bjk =



−i, for j = k − 1;

x, for j = k;

iry, for r = j − k and k 6= 1;

(s+ 1)iry, for r = j − k and k = 1;

0, otherwise;

that is,
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B(r,s)
n =



x −i 0 · · · · · · · · · · · · 0

0 x −i 0 · · · . . . · · · 0
... . . . . . . . . . . . . · · · · · · ...

0
. . . . . . . . . . . . · · · 0

(s+ 1)iry 0 · · · · · · x −i 0 · · · 0

0 iry 0
. . . 0 x −i . . . 0

... . . . iry 0 · · · . . . . . . . . . 0

0 · · · . . . . . . . . . . . . . . . x −i
0 · · · 0 iry 0 · · · . . . . . . 0 x



. (8)

Then for n ≥ 1,
per(B(r,s)

n ) = V r,s
n . (9)

Remark 2.3. For s = r, A(r,r)
n is the matrix Wp,n defined in [6] and B(r,r)

n is the matrix Hp,n.

Example 2.4. We give the determinantal and permanental representations of the 4-th V r,s
n for

r = 3 and 1 ≤ s ≤ 3,

det


x i 0 0

0 x i 0

0 0 x i

2i3y 0 0 x

 = per


x −i 0 0

0 x −i 0

0 0 x −i
2i3y 0 0 x

 = x4 + 2y = V 3,1
4 .

det


x i 0 0

0 x i 0

0 0 x i

3i3y 0 0 x

 = per


x −i 0 0

0 x −i 0

0 0 x −i
3i3y 0 0 x

 = x4 + 3y = V 3,2
4 .

det


x i 0 0

0 x i 0

0 0 x i

4i3y 0 0 x

 = per


x −i 0 0

0 x −i 0

0 0 x −i
4i3y 0 0 x

 = x4 + 4y = V 3,3
4 .

Secondly, we give another type of lower Hessenberg matrices whose determinants and
permanents are V r,s

n .

Theorem 2.5. Let (V r,s
n ) be the companion sequences family associated to the bivariate

r-Fibonacci polynomial and C(r,s)
n = (cij) be an n× n lower Hessenberg matrix defined by

cij =



−1, for j = i+ 1;

x, for i = j;

y, for r = i− j and j 6= 1;

(s+ 1)y, for r = i− j and j = 1;

0, otherwise;
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that is,

C(r,s)
n =



x −1 0 · · · · · · · · · · · · 0

0 x −1 0 · · · . . . · · · 0
... . . . . . . . . . . . . · · · · · · ...

0
. . . . . . . . . . . . · · · 0

(s+ 1)y 0 · · · · · · x −1 0 · · · 0

0 y 0
. . . 0 x −1 . . . 0

... . . . y 0 · · · . . . . . . . . . 0

0 · · · . . . . . . . . . . . . . . . x −1
0 · · · 0 y 0 · · · . . . . . . 0 x



. (10)

Then,
det(C(r,s)

n ) = V r,s
n .

Proof. The proof is the same as Theorem 2.1, using recurrence (4).

From Theorem 2.5 and Remark 1.4 we give the permanental representation as follows.

Theorem 2.6. Let (V r,s
n ) be the companion sequences family associated to the bivariate

r-Fibonacci polynomial and D(r,s)
n = (dij) be an n× n lower Hessenberg matrix defined by

dij =



1, for j = i+ 1;

x, for i = j;

y, for r = i− j and j 6= 1;

(s+ 1)y, for r = i− j and j = 1;

0, otherwise;

that is,

D(r,s)
n =



x 1 0 · · · · · · · · · · · · 0

0 x 1 0 · · · . . . · · · 0
... . . . . . . . . . . . . · · · · · · ...

0
. . . . . . . . . . . . · · · 0

(s+ 1)y 0 · · · · · · x 1 0 · · · 0

0 y 0
. . . 0 x 1

. . . 0
... . . . y 0 · · · . . . . . . . . . 0

0 · · · . . . . . . . . . . . . . . . x 1

0 · · · 0 y 0 · · · . . . . . . 0 x



. (11)

Then,
per(D(r,s)

n ) = V r,s
n .
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Example 2.7. We give the determinantal and permanental representations of the 4-th V r,s
n for

r = 3 and 1 ≤ s ≤ 3 using matrices C(r,s)
n and D(r,s)

n ,

det


x −1 0 0

0 x −1 0

0 0 x −1
2y 0 0 x

 = per


x 1 0 0

0 x 1 0

0 0 x 1

2y 0 0 x

 = x4 + 2y = V 3,1
4 .

det


x −1 0 0

0 x −1 0

0 0 x −1
3y 0 0 x

 = per


x 1 0 0

0 x 1 0

0 0 x 1

3y 0 0 x

 = x4 + 3y = V 3,2
4 .

det


x −1 0 0

0 x −1 0

0 0 x −1
4y 0 0 x

 = per


x 1 0 0

0 x 1 0

0 0 x 1

4y 0 0 x

 = x4 + 4y = V 3,3
4 .

Remark 2.8. Our results are valid for all classic sequences and polynomials stated in Table 2 by
fixing parameters x, y, r and s.

3 Applications

In this section determinantal and permanental representations of V r,s
n are used to give n consecutive

terms of V r,s
n simultaneously.

In [3], the authors gave a new method to compute the inverse and the determinant of a
Hessenberg matrix. They defined a triangular matrix H̃ associated with a Hessenberg matrix
H as follows,

H̃ =



1 0 0 · · · 0 0

h11 h12 0
. . . ... 0

h21 h22 h23
. . . 0

...
...

... . . . . . . 0 0

hn−1,1 hn−1,2 · · · hn−1,n−1 hn−1,n 0

hn,1 hn,2 · · · hn,n−1 hn,n 1


.

Then partitioning H̃−1 into

H̃−1 =

[
α L
h βT

]
,

where α,L, h and βT are matrices of size n× 1, n× n, 1× 1, n× 1, respectively. They obtained
the following equalities,

det(H) = (−1)nh.det(H̃), (12)

and,
Hα + hen = 0. (13)
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Now we present our results.

Theorem 3.1. Let Ã(r,s)
n+1 be the (n+ 1)× (n+ 1) non-singular matrix defined by

Ã
(r,s)
n+1 =


1 0 0 · · · 0 0

...
A

(r,s)
n 0

0

1

 ,

where A(r,s)
n is the n-th order matrix of defined in Theorem 2.1. Then the first column of (Ã(r,s)

n+1)
−1

is as follows, 

1

iV r,s
1

i2V r,s
2

...

in−1V r,s
n−1

in+1V r,s
n


,

where i2 = −1.

Proof. Following the decomposition approach used in [3], we construct (Ã(r,s)
n+1)

−1 as follows,

(Ã
(r,s)
n+1)

−1 =

[
(α)n×1 (L)n×n

(h)1×1 (βT )1×n

]
,

Hence the first column of (Ã(r,s)
n+1)

−1 is[
(α)n×1

h

]
(n+1)×1

.

Then from Theorem 2.1 and Equalities (12) and (13) we have

det(A(r,s)
n ) = (−1)nh. det(Ã(r,s)

n+1)⇒ h =
det(A

(r,s)
n )

(−1)n det(Ã(r,s)
n+1)

=
V r,s
n+1

(−1)n(i)n−1
= in+1V r,s

n

and

[α] = −(A(r,s)
n )−1(i)n+1V r,s

n en =



1

iV r,s
1

i2V r,s
2

...

in−1V r,s
n−1


.

Consequently, we get the desired result.
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Theorem 3.2. Let C̃(r,s)
n+1 be the (n+ 1)× (n+ 1) non-singular matrix defined by

C̃
(r,s)
n+1 =


1 0 0 · · · 0 0

...
C

(r,s)
n 0

0

1

 ,

where C(r,s)
n is the n-th order matrix of defined in Theorem 2.5. Then the first column of (C̃(r,s)

n+1 )
−1

is as follows, 

1

V r,s
1

V r,s
2
...

V r,s
n−1

−V r,s
n


.

Proof. The proof is the same as Theorem 3.1.

4 Conclusion

We give two types of determinantal and permanental representations of companion sequences
associated to the r-Fibonacci sequence, our results generalize the representations of generalized
bivariate r-Lucas polynomials given in [6].

Hence, determinantal and permanental representations of companion sequences associated to
classic Lucas numbers Ln, r-Lucas polynomials Lr,n(x), . . . are established.

As applications of our determinantal and permanental representations, we get n consecutive
terms of companion sequences simultaneously in the first column of the inverse of a special
Hessenberg matrix.

Similar representations to those provided in Section 2 could be established by alternative
methods using generating functions of (V r,s

n ), for instance Wronski’s formula; see [4, page 17],
is used to produce the coeffcients of the reciprocal of a formal series in terms of determinants of
Toeplitz–Hessenberg matrices. Also the result obtained in Section 3 using Hessenberg matrices
can be obtained using inverses of triangular Toeplitz matrices with modified first column.
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