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1 Introduction

In mathematics, complex, dual and hyperbolic numbers are two dimensional number systems. In
literature, there are many algebraic, geometric and even physical investigations for these number
systems. A hyperbolic number is written in the form w = x+ jy, where x and y are real numbers
and hyperbolic unit j satisfies j2 = 1. The set of hyperbolic numbers H is defined as
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H = {w = x+ jy : x, y ∈ R, j2 = 1}.

The hyperbolic modulus is
‖w‖ =

√
|ww| =

√
x2 − y2

(for details, see [1, 2]). Also, number systems such as generalized complex numbers [3],
hypercomplex numbers [4], etc., that contain these number systems together have been introduced.
The hybrid number system, on the other hand, is a special and useful number system that combines
complex, hyperbolic and dual numbers introduced by Özdemir in [5]. The set of hybrid numbers,
denoted by K, is defined as

K = {a+ bi+ cε+ dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+ i}.

The multiplication table of hybrid numbers base elements is given below.

. 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε h+ 1 0 −ε
h h −ε− i ε 1

Table 1. Multiplication table of hybrid numbers

Also in this study, algebraic and geometric properties, classifications and matrix representations
of hybrid numbers are mentioned. For details about hybrid numbers, see [5].

In [6] multicomponent number systems are given and four-component number systems and
eight-component number system are examined. Four-component number systems such as dual-
hyperbolic, dual-complex, complex-hyperbolic defined in four-dimensional spaces are defined.
A wide literature has been formed by examining dual-complex, dual-hyperbolic, complex-
hyperbolic, bicomplex and bihyperbolic numbers by researchers [6–12].

A dual-hyperbolic number is defined as below, [7]

DH = {w = w1 + jw2|w1, w2 ∈ D, j2 = 1, j 6= ±1}.

The set of complex-hyperbolic numbers can be obtained as [8]

CH = {w = z1 + jz2|z1, z2 ∈ C, j2 = 1, j 6= ±1}.

The set of bihyperbolic numbers can be obtained as [9]

H2 = {w = h1 + jh2|h1, h2 ∈ H, j2 = 1, j 6= ±1}.

In this study, a new eight-component number system is introduced, inspired by hybrid numbers
and multicomponent number systems. This number system is called hybrid-hyperbolic numbers
because it is a number system that includes the complex-hyperbolic, dual-hyperbolic and
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bihyperbolic numbers described above. Consequently, this number system is the general form
of many number systems and will give effective results in both theory and practice. Also,
algebraic properties of hybrid hyperbolic numbers are examined and some characterizations are
given. Finally, hyperbolic matrix representations of hybrid hyperbolic numbers are given and the
properties of these matrices are examined.

2 Hybrid-hyperbolic numbers

In this section, we define hybrid-hyberbolic numbers and investigate their algebraic properties.
Also, the terms conjugate, inner product, norm and inverse for hybrid-hyperbolic numbers are
defined.

Let us deal with a statement of the form H0+H1i+H2ε+H3h which is a linear combination
of the hybrid units {1, i, ε, h}, where the H0, H1, H2 and H3 are hyperbolic numbers. Since
{1, i, ε, h} are hybrid units, they provide the following multiplication rules

i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+ i (1)

Consequently, we can give the following definition.

Definition 2.1. The set of hybrid-hyperbolic numbers, denoted by KH, is represented as

KH = {W = H0 +H1i+H2ε+H3h : H0, H1, H2, H3 ∈ H}.

Let us examine the unit j for hyperbolic numbers Hk = ak + jbk ∈ H, where 0 ≤ k ≤ 3.
Since the theory is to construct a number system that includes multicomponent number systems,
j and h have been considered as different (j 6= h) hyperbolic units. Also, since multicomponent
units for multicomponent numbers are commutative and given by complex-hyperbolic numbers
(with ij = ji), dual-hyperbolic numbers (with jε = εj), bihyperbolic numbers (with jh = hj).
Hence, {1, ji, jε, jh} containing complex-hyperbolic, dual-hyperbolic and bihyperbolic units are
called hybrid-hyperbolic units and the following product rules are valid:

(ji)2 = −1, (ji)(jε) = (1− h), (ji)(jh) = ε+ i

(jε)2 = 0, (jε)(ji) = h+ 1, (jε)(jh) = −ε
(jh)2 = 1, (jh)(ji) = −ε− i, (jh)(jε) = ε

On the other hand, W can be given in the following forms.

1. {W = w1 + jw2, j
2 = 1}, where w1 and w2 are hybrid numbers.

Let Hk = ak + jbk ∈ H, where 0 ≤ k ≤ 3. Then, we have

W = (a0 + jb0) + (a1 + jb1)i+ (a2 + jb2)ε+ (a3 + jb3)h.

By editing this equation, we get

W = (a0 + a1i+ a2ε+ a3h) + j(b0 + b1i+ b2ε+ b3h).

Finally, it can be written in the form of W = w1 + jw2, where j2 = 1 for hybrid numbers
w1 = a0 + a1i+ a2ε+ a3h and w2 = b0 + b1i+ b2ε+ b3h.
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2. W = a0+a1i+a2ε+a3h+b0j+b1ij+b2εj+b3hj, where ak, bk ∈ R, k = 0, 1, 2, 3. Hence,
a four-component number system is obtained, and the multiplication table of these units can
be constructed using the multiplication rules of hybrid units and hybrid-hyperbolic units.

W can be written total of a scalar part S(W ) = H0 and a vector part V (W ) = H1i+H2ε+H3h.
Therefore, we have

W = S(W ) + V (W ).

We define addition, scalar multiplication and multiplication on hybrid-hyperbolic numbers as
follows:

W1 +W2 = (H0 +H∗0 ) + (H1 +H∗1 )i+ (H2 +H∗2 )ε+ (H3 +H∗3 )h

λW = (λH0) + (λH1)i+ (λH2)ε+ (λH3)h

W1W2 = [H0H
∗
0 −H1H

∗
1 +H1H

∗
2 +H2H

∗
1 +H3H

∗
3 ]

+ [H0H
∗
1 +H1H

∗
0 +H1H

∗
3 −H3H

∗
1 ]i

+ [H0H
∗
2 +H1H

∗
3 +H2H

∗
0 −H2H

∗
3 −H3H

∗
1 +H3H

∗
2 ]ε

+ [H0H
∗
3 −H1H

∗
2 +H2H

∗
1 −H3H

∗
0 ]h

(2)

whereW1 = H0+H1i+H2ε+H3h andW2 = H∗0 +H
∗
1 i+H

∗
2ε+H

∗
3h are any hybrid-hyperbolic

numbers and λ is any hyperbolic number. Using the product rules of hybrid units in Table 1, the
product of hybrid-hyperbolic numbers is calculated.

Theorem 2.1. The set of hybrid-hyperbolic numbers a module over the ring of hyperbolic numbers
with the addition and multiplication operations which are defined above.

Remark 2.1. According to Equalities 2, the hybrid-hyperbolic numbers are not commutative.

Corollary 2.1.1. Hybrid-hyperbolic numbers are generalized versions of some special numbers.
These are

1. If hyperbolic numbers H1 = H3 = 0, W is a dual-hyperbolic or hyperbolic-dual number
[7].

2. If hyperbolic numbers H2 = H3 = 0, W is a complex-hyperbolic or hyperbolic-complex
number [8].

3. If hyperbolic numbers H1 = H2 = 0, W is a bihyperbolic number [9].

Definition 2.2. A hybrid-hyperbolic number W = H0 +H1i+H2ε+H3h has three conjugates
such that

1. W †1 = H0 −H1i−H2ε−H3h = w1 + jw2, hybrid conjugation,

2. W †2 = H0 +H1i+H2ε+H3h = w1 − jw2, hyperbolic conjugation,

3. W †3 = H0 −H1i−H2ε−H3h = w1 − jw2, coupled conjugation.
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Theorem 2.2. Let W = H0 +H1i+H2ε+H3h be a hybrid-hyperbolic number. Then, we have

1. W is a hyperbolic number⇔W †1 = W,

2. W is a hybrid number⇔W †2 = W,

3. W is a pure hybrid-hyperbolic number⇔W †3 = −W †2.

Proof. 1. Suppose that W †1 = W . Therefore, we have

H0 +H1i+H2ε+H3h = H0 −H1i−H2ε−H3h,

⇒ −H1 = H1,−H2 = H2,−H3 = H3,

⇒ H1 = 0, H2 = 0, H3 = 0,

⇒ W = H0.

Consequently, W is a hyperbolic number.

2. Suppose that W †2 = W . Let H0 = a0 + jb0, H1 = a1 + jb1, H2 = a2 + jb2 and
H3 = a3 + jb3 ∈ H. Therefore, we get

H0 +H1i+H2ε+H3h = H0 +H1i+H2ε+H3,

⇒ H0 = H0, H1 = H1, H2 = H2, H3 = H3,

⇒ a0 + jb0 = a0 − jb0, a1 + jb1 = a1 − jb1,
a2 + jb2 = a2 − jb2, a3 + jb3 = a3 − jb3,
⇒ b0 = −b0, b1 = −b1, b2 = −b2, b3 = −b3,
⇒ b0 = b1 = b2 = b3 = 0,

⇒ W = a0 + a1i+ a2ε+ a3h.

Consequently, W is a hybrid number.

3. Suppose that W †3 = −W †2. Therefore, we get

H0 −H1i−H2ε−H3 = −H0 +H1i+H2ε+H3,

⇒ H0 = −H0,

⇒ H0 = 0,

⇒ H0 = 0.

Consequently, W is a pure hybrid-hyperbolic number.

2.1 Inner product, norm of hybrid-hyperbolic numbers

In this section, inner product and norm definitions of hybrid hyperbolic numbers are given and
these concepts are examined.
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Definition 2.3. The inner product in the hybrid-hyperbolic numbers is defined as follows:

g(W1,W2) =
1

2
(W †1

1 W2 +W †1
2 W1) (3)

According to Equation 3, we get

g(W1,W2) = H0H
∗
0 +H1H

∗
1 −H1H

∗
2 −H2H

∗
1 −H3H

∗
3 , (4)

where W1 = H0 +H1i+H2ε+H3h and W2 = H∗0 +H∗1 i+H∗2ε+H∗3h.

It should be noted that the result of Equation 4 is a hyperbolic number. The inner product
satisfies the following properties:

i) g(W1,W2) = g(W2,W1), W1,W2 ∈ KH

ii) g(W1,W2 +W3) = g(W1,W2) + g(W1,W3), W3 ∈ KH

iii) λg(W1,W2) = g(λW1,W2) + g(W1, λW2), λ ∈ H

iv) g(W1,W1) = W †1
1 W1 ∈ H

According to i), ii), and iii), the inner product is a symmetric bilinear form. But iv) shows us
that is not positive definite. The inner product of the hybrid-hyperbolic numbers is a generalized
inner product for the complex-hyperbolic, dual-hyperbolic and bihyperbolic number systems. If
this situation is further generalized, we have the following Table 2.

g(W1,W2) W2 complex-hyperbolic W2 dual-hyperbolic W2 bi-hyperbolic

W1 complex-hyperbolic H0H
∗
0 +H∗1H

∗
1 H0H

∗
0 −H1H

∗
2 H0H

∗
0

W1 dual-hyperbolic H0H
∗
0 −H2H

∗
1 H0H

∗
0 H0H

∗
0

W1 bi-hyperbolic H0H
∗
0 −H2H

∗
1 H0H

∗
0 −H∗1H

∗
1 H0H

∗
0 −H3H

∗
3

Table 2. Special cases of inner products of hybrid-hyperbolic numbers

We can write the inner product of two hybrid-hyperbolic numbers as follows:

g(W1,W2) = g(w1, w
∗
1) + g(w2, w

∗
2) + j(g(w1, w

∗
2) + g(w∗1, w2)), (5)

where W1 = w1 + jw2 and W2 = w∗1 + jw∗2. In Equation 5, if W1 is taken instead of W2, we get

g(W1,W1) = g(w1, w1) + g(w2, w2) + 2jg(w1, w2).

Definition 2.4. Let W = H0 + H1i + H2ε + H3h be a hybrid-hyperbolic number. The norm is
denoted by NW . Therefore, we can write

NW =
√
|g(W,W )| =

√
|H2

0 + (H1 −H2)2 −H2
2 −H2

3 |.

The special versions of this norm may correspond to one of the modules of dual-hyperbolic,
complex-hyperbolic and bihyperbolic numbers.
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Definition 2.5. The inverse of the hybrid-hyperbolic number W = H0 + H1i + H2ε + H3h,
N(W ) 6= 0 is defined as

W−1 =
W †1

N(W )2
.

Lemma 2.3. Let W = w1 + jw2 be a hybrid-hyperbolic number, where w1 and w2 are hybrid
numbers. Then, the norm of W be given by

NW = 4
√
|(g(w1, w1) + g(w2, w2))2 − 4g(w1, w2)2|.

Proof. According to the definition of norm, we have

NW =
√
|g(W,W )| =

√
|g(w1 + jw2, w1 + jw2)|.

If the statement is regulated

NW =
√
|g(w1, w1) + g(w2, w2) + j(g(w1, w2) + g(w2, w1)|,

=
√
|g(w1, w1) + g(w2, w2) + 2jg(w1, w2)|,

= 4
√
|(g(w1, w1) + g(w2, w2))2 − 4g(w1, w2)2|.

Remark 2.2. Let W = w1 + jw2 be a hybrid-hyperbolic number, where w1 and w2 are hybrid
numbers. Then W is a unit hybrid-hyperbolic number

g(w1, w2)
2 =

(g(w1, w1) + g(w2, w2))
2 ∓ 1

4
.

Proof. According to Lemma 2.3, we have

NW = 1 ⇔ |(g(w1, w1) + g(w2, w2))
2 − 4g(w1, w2)

2| = 1

⇔ (g(w1, w1) + g(w2, w2))
2 − 4g(w1, w2)

2 = ∓1

⇔ g(w1, w2)
2 =

(g(w1, w1) + g(w2, w2))
2 ∓ 1

4
.

3 Hyperbolic matrix representations
of hybrid-hyperbolic numbers

3.1 2×2 Hyperbolic matrix representations of hybrid-hyperbolic numbers

In this section, we get 2× 2 hyperbolic matrix representations of hybrid-hyperbolic numbers and
some properties of them are examined.

Theorem 3.1. LetW = H0+H1i+H2ε+H3h ∈ KH be an arbitrary hybrid-hyperbolic number,
where H0, H1, H2, H3,∈ H. Then the hyperbolic matrix

σ(W ) =

[
H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

]
,

which corresponds to W , is called 2× 2 hyperbolic matrix representation of W .
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Proof. Assume the hyperbolic matrix set which can be represented as

M2(H) =

{[
a b

c d

]
: a, b, c, d ∈ H

}
or

M2(H) =

{[
z1 + jz∗1 z2 + jz∗2
z3 + jz∗3 z4 + jz∗4

]
: zi, z

∗
i ∈ R, j2 = 1, i = 1, 2, 3, 4

}
Then, we can write

a0 =
z1 + z4

2
, b0 =

z∗1 + z∗4
2

a1 =
z2 − z3

2
+
z1 − z4

2
, b1 =

z∗1 − z∗4
2

+
z∗2 − z∗3

2

a2 =
z1 − z4

2
, b2 =

z∗1 − z∗4
2

a3 =
z2 + z3

2
, b3 =

z2∗+ z3∗
2

.

Therefore, we have

A =

[
(a0 + a2) + j(b0 + b2) (a1 − a2 + a3) + j(b1 − b2 + b3)

(a2 − a1 + a3) + j(b2 − b1 + b3) (a0 − a2) + j(b0 − b2)

]
(6)

According to Equation 6, we have

σ(W ) =

[
H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

]

where Hi = ai + jbi ∈ H, i = 0, 1, 2, 3.

Remark 3.1. Let us take into account the function

σ : KH→M2(H)

W = H0 +H1i+H2ε+H3h→ σ =

[
H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

]
.

The function σ satisfies the properties

σ(W1 +W2) = σ(W1) + σ(W2), σ(W1W2) = σ(W1)σ(W2),

where W1 and W2 are any hybrid-hyperbolic numbers. Also, it can be easily seen that σ is a
bijection. Consequently, σ is a linear isomorphism.

Theorem 3.2. Let W = H0+H1i+H2ε+H3h ∈ KH be a hybrid-hyperbolic number. Then the
following equalities hold:

1. | det(σ(W ))| = (NW )2 = |H2
0 + (H1 −H2)

2 −H2
2 −H2

3 |

2. W is invertible if and only if σ(W ) is invertible, then σ (W−1) = (σ(W ))−1.
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Proof. 1. Let

σ =

[
H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

]
be a hyperbolic matrix representation of W . Then, we get

| det(σ(W ))| =

∣∣∣∣∣ H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

∣∣∣∣∣
= |H2

0 + (H1 −H2)
2 −H2

2 −H2
3 |

= (NW )2

2. According to Definition 2.5, W is invertible if and only if NW 6= 0. Then, we have
W is invertible⇔ NW 6= 0⇔ det(σ(W )) 6= 0⇔ σ(W ) is invertible.
Assume that W and σ(W ) are invertible. Therefore, we have

WW−1 = W−1W = 1

Since σ is a linear isomorphism, we can write

σ(W )σ(W−1) = σ(WW−1) = σ(1) =

[
1 0

0 1

]
= I2

and

σ(W−1)σ(W ) = σ(W−1W ) = σ(1) =

[
1 0

0 1

]
= I2

Consequently, we have σ (W−1) = (σ(W ))−1.

Theorem 3.3. Let W = H0 + H1i + H2ε + H3h ∈ KH be a hybrid-hyperbolic number. Then,
the following equations are provided:

1. σ(W †1) =

[
0 1

−1 0

]
(σ(W ))T

[
0 −1
1 0

]
,

2. σ(W †2) =

[
0 1

−1 0

]
σ(W )4

[
0 −1
1 0

]
,

3. σ(W †3) = (σ(W ))5,

where W †1 is hybrid-conjugate , W †2 is hyperbolic-conjugate, σ(W )4 is hyperbolic-conjugate
of matrix σ(W ), W †3 is coupled-conjugate and (σ(W ))5 = (σ(W )4)T .

Proof. 1. Let W = H0 + H1i + H2ε + H3h be a hybrid-hyperbolic number. The hybrid
conjugation W †1 = H0 −H1i−H2ε−H3h of hybrid-hyperbolic number. The hyperbolic
matrix representation of this is:

σ(W †1) =

[
H0 − jH2 (−H1 +H2)− jH3

(−H2 +H1)− jH3 H0 + jH2

]
.
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Also, we have

(σ(W ))T =

[
H0 + jH2 (H2 −H1) + jH3

(H1 −H2) + jH3 H0 − jH2

]
.

As a result of basic operations results, we obtain

σ(W †1) =

[
0 1

−1 0

]
(σ(W ))T

[
0 −1
1 0

]
.

2. LetW = H0+H1i+H2ε+H3h be a hybrid-hyperbolic number. The hyperbolic conjugation
W †3 = H0 − H1i − H2ε − H3h of hybrid-hyperbolic number. The hyperbolic matrix
representation of this is:

σ(W †2) =

[
H0 + jH2 (H1 −H2) + jH3

(H2 −H1) + jH3 H0 − jH2

]
.

On the other hand, we get

σ(W )4 =

[
(H0 + jH2)

†2 ((H1 −H2) + jH3)
†2

((H2 −H1) + jH3)
†2 (H0 − jH2)

†2

]

=

[
H†20 + (jH2)

†2 (H1 −H2)
†2 + (jH3)

†2

(H2 −H1)
†2 + (jH3)

†2 H†20 + (−jH2)
†2

]
.

After this step, general conjugate will be used instead of †2 since the conjugates of the
hyperbolic numbers are taken.

σ(W )4 =

[
(H0 − jH2) (H1 −H2)− jH3)

(H2 −H1)− jH3 H0 + jH2

]
.

Consequently, we have σ(W †2) =

[
0 1

−1 0

]
σ(W )4

[
0 −1
1 0

]
.

3. Let W = H0+H1i+H2ε+H3h be a hybrid-hyperbolic number. The coupled conjugation
W †3 = H0 − H1i − H2ε − H3h of hybrid-hyperbolic number. The hyperbolic matrix
representation of this is:

σ(W †3) =

[
H0 − jH2 (−H1 +H2)− jH3

(−H2 +H1)− jH3 H0 + jH2

]
Moreover, we can write

σ(W )5 =

[
(H0 − jH2) (H1 −H2)− jH3)

(H2 −H1)− jH3 H0 + jH2

]T

=

[
(H0 − jH2) (H2 −H1)− jH3)

(H1 −H2)− jH3) H0 + jH2

]
.

Hence equality is shown.
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3.2 4×4 Hyperbolic matrix representations of hybrid-hyperbolic numbers

Let W = H0 +H1i+H2ε+H3h be a hybrid-hyperbolic number. We introduce the linear maps

ζ+ : KH → KH
Q → ζ+(Q) = WQ

(7)

and
ζ− : KH → KH

Q → ζ−(Q) = QW
(8)

Then, we have

ζ+(1) = W1 = H0 +H1i+H2ε+H3h

ζ+(i) = Wi = (H2 −H1) + (H0 −H3)i−H3ε+H2h

ζ+(ε) = Wε = H1 + (H0 +H3)ε−H1h

ζ+(h) = Wh = H3 +H1i+ (H1 −H2)ε+H0h

(9)

and
ζ−(1) = 1W = H0 +H1i+H2ε+H3h

ζ−(i) = iW = (H2 −H1) + (H0 +H3)i+H3ε−H2h

ζ−(ε) = εW = H1 + (H0 −H3)ε+H1h

ζ−(h) = hW = H3 −H1i+ (H2 −H1)ε+H0h

(10)

Therefore, we get the following hyperbolic matrix representations

Z+(W ) =


H0 H2 −H1 H1 H3

H1 H0 −H3 0 H1

H2 −H3 H0 +H3 H1 −H2

H3 H2 −H1 H0


and

Z−(W ) =


H0 H2 −H1 H1 H3

H1 H0 +H3 0 −H1

H2 H3 H0 −H3 H2 −H1

H3 −H2 H1 H0

 ,
where ζ+, ζ− are linear maps and Hi = ai + jbi ∈ H, i = 0, 1, 2, 3.

Thus, the product of two hybrid hyperbolic numbers with the help of these matrices can be
given by the matrix vector product as:

WQ = Z+(W )Q =


H0 H2 −H1 H1 H3

H1 H0 −H3 0 H1

H2 −H3 H0 +H3 H1 −H2

H3 H2 −H1 H0



H∗0
H∗1
H∗2
H∗3


and

QW = Z−(W )Q =


H0 H2 −H1 H1 H3

H1 H0 +H3 0 −H1

H2 H3 H0 −H3 H2 −H1

H3 −H2 H1 H0



H∗0
H∗1
H∗2
H∗3


whereW = H0+H1i+H2ε+H3h andQ = H∗0+H

∗
1 i+H

∗
2ε+H

∗
3h hybrid-hyperbolic numbers.
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Theorem 3.4. LetW = H0+H1i+H2ε+H3h andQ = H∗0+H
∗
1 i+H

∗
2ε+H

∗
3h hybrid-hyperbolic

numbers in KH and λ be a hyperbolic number.

1. W = Q⇔ Z+(W ) = Z+(Q)⇔ Z−(W ) = Z−(W )

2. Z+(W +R) = Z+(W ) + Z+(Q), Z−(W +R) = Z−(W ) + Z−(Q)

3. Z+(λW ) = λZ+(W ), Z−(λW ) = λZ−(W )

4. Z+(WQ) = Z+(W )Z+(Q), Z−(WQ) = Z−(Q)Z−(W )

5. Z+(W−1) = [Z+(W )]−1, Z−(W−1) = [Z−(W )]−1

6. detZ+(W ) = (NW )4, detZ−(W ) = (NW )4, trace[Z+(W )] = trace[Z−(W )] = 4H0.

Proof. All properties except for the fourth and the fifth oneare easily shown. Now let us consider
the 4 and 5 properties:

4. Let W = H0 + H1i + H2ε + H3h and Q = H∗0 + H∗1 i + H∗2ε + H∗3h hybrid-hyperbolic
numbers in KH. Then, we can write

WQ = A+Bi+ Cε+Dh,

whereA = H0H
∗
0−H1H

∗
1+H1H

∗
2+H2H

∗
1+H3H

∗
3 ,B = H0H

∗
1+H1H

∗
0+H1H

∗
3−H3H

∗
1 ,

C = H0H
∗
2 +H1H

∗
3 +H2H

∗
0−H2H

∗
3−H3H

∗
1 +H3H

∗
2 andD = H0H

∗
3−H1H

∗
2 +H2H

∗
1−

H3H
∗
0 . Therefore, we get

Z+(WQ) =


A C −B B D

B A− C 0 B

C −D A+ C B − C
D C −B A



=


H0 H2 −H1 H1 H3

H1 H0 −H3 0 H1

H2 −H3 H0 +H3 H1 −H2

H3 H2 −H1 H0




H∗0 H2∗ −H1∗ H1∗ H3∗
H1∗ H0∗ −H3∗ 0 H1∗
H2∗ −H3∗ H0∗+H3∗ H1∗ −H2∗
H3∗ H2∗ −H1∗ H0∗


= Z+(W )Z+(Q)

and

Z−(WQ) =


A C −B B D

B A+ C 0 −B
C D A− C C −B
D −C B A



=


H∗0 H2∗ −H1∗ H1∗ H3∗
H1∗ H0∗+H3∗ 0 −H1∗
H2∗ H3∗ H0∗ −H3∗ H2∗ −H1∗
H3∗ −H2∗ H1∗ H0∗




H0 H2 −H1 H1 H3

H1 H0 +H3 0 −H1

H2 H3 H0 −H3 H2 −H1

H3 −H2 H1 H0


= Z−(Q)Z−(R).

37



5. According to definition inverse of hybrid-hyperbolic numbers, we have

WW−1 = W−1W = 1

Then, we can write

Z+(W )Z+(W−1) = Z+(WW−1) = Z+(1) = I4

and
Z+(W−1)Z+(W ) = Z+(W−1W ) = Z+(1) = I4.

Consequently, we haveZ+(W−1) = [Z+(W )]−1. Similarly, it can be seen thatZ−(W−1) =

[Z−(W )]−1.

Besides the hyperbolic matrix representations of hybrid hyperbolic numbers, the 4 × 4 real
representation can be given as follows.

It is known that each hybrid number q = a+bi+cε+dh and hyperbolic number h = h1+jh2
can be represented by the two 2× 2 real matrices[

a+ c (b− c) + d

(c− b) + d a− c

]
and [

h1 h2
h2 h1

]
.

Therefore, every hybrid-hyperbolic number

W = (a0 + jb0) + (a1 + jb1)i+ (a2 + jb2)ε+ (a3 + jb3)h

can be represented by a 4× 4 real matrix.

W ↔ XW =


a0 + a2 b0 + b2 (a1 − a2) + a3 (b1 − b2) + b3
b0 + b2 a0 + a2 (b1 − b2) + b3 (a1 − a2) + a3

(a2 − a1) + a3 (b2 − b1) + b3 a0 − a2 b0 − b2
(b2 − b1) + b3 (a2 − a1) + a3 b0 − b2 a0 − a2

 .

Example 3.1. LetW = (2+3j)+(1−j)i+(3−4j)ε+(2+j)h be a hybrid-hyperbolic number.
The 2× 2 hyperbolic matrix representation is

σ(W ) =

[
−2 + 6j −1 + 5j

3− j 6 + 0j

]
.

The 4× 4 hyperbolic matrix representation is

Z+(W ) =


2 + 3j 2− 3j 1− j 2 + j

1− j 2j 0 1− j
3− 4j −2− j 4 + 4j −2 + 3j

2 + j 3− 4j −1 + j 2 + 3j


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and

Z−(W ) =


2 + 3j 2− 3j 1− j 2 + j

1− j 4 + 4j 0 −1 + j

3− 4j 2 + j 2j 2− 3j

2 + j −3 + 4j 1− j 2 + 3j

 .
The 4× 4 real matrix representation is

XW =


5 −1 0 4

−1 5 4 0

4 −2 −1 7

−2 4 7 −1

 .
NW =

√
|(2 + 3j)2 + (1− j − 3 + 4j)2 − (3− 4j)2 − (2 + j)2|

=
√
| − 4 + 20j|

= 4
√
|16− 400|

= 4
√
384

= 4
√
| detXW |, 2

√
| detσW |.

(11)
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