Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2022, Volume 28, Number 1, Pages 21–25 DOI: 10.7546/nntdm.2022.28.1.21-25

Factorials as repdigits in base b

Nurettin Irmak¹ and Alain Togbé²

¹ Department of Fundamental Science, Faculty of Engineering and Natural Science, Konya Technical University, Konya, Turkey e-mails: irmaknurettin@gmail.com, nirmak@ktun.edu.tr

> ² Department of Mathematics, Purdue University Northwest 1401 S. U. S. 421., Westville, IN 46391, United States
> e-mail: atogbe@pnw.edu

Received: 11 January 2021 Accepted: 17 January 2022 Revised: 1 October 2022 Online First: 6 February 2022

Abstract: Let $b \in \{2, 3, ..., 9\}$. In this paper, we show that the solutions of the equation $(x)_b = m!$ are $(11)_5 = 3!$, $(33)_7 = (44)_5 = 4!$, where $(x)_b$ has at least two digits. **Keywords:** Factorials, Repdigits, Diophantine equation. **2020 Mathematics Subject Classification:** 11D72, 11A07, 11B50.

1 Introduction

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence given by $F_n = F_{n-1} + F_{n-2}$, for $n \geq 0$, with $F_0 = 0$ and $F_1 = 1$. The first few terms of this sequence are

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots$$

The following Table 1 shows several generalizations of the Fibonacci sequence.

Finding special properties in these sequences is a very interesting problem. A number of mathematicians studied equations involving the above sequences, repdigits and factorials. For example,

- Marques and Lengyel [8] solved the equation $T_n = m!$.
- Irmak [3] found the solutions of the equation $w_n = m!$, where w_n is the *n*-th term of Perrin or Padovan sequence.

Sequence	Recurrence relation	Initial conditions
Lucas	$L_n = L_{n-1} + L_{n-2}$	$L_0 = 2 \text{ and } L_1 = 1$
Pell	$P_n = 2P_{n-1} + P_{n-2}$	$P_0 = 0$ and $P_1 = 1$
Pell-Lucas	$Q_n = 2Q_{n-1} + Q_{n-2}$	$Q_0 = 2$ and $Q_1 = 2$
Balancing	$B_n = 6B_{n-1} - B_{n-2}$	$B_0 = 0 \text{ and } B_1 = 1$
Jacobshtal	$J_n = J_{n-1} + 2J_{n-2}$	$J_0 = 0 \text{ and } J_1 = 1$
Tribonacci	$T_n = T_{n-1} + T_{n-2} + T_{n-3}$	$T_0 = 0, T_1 = 1, \text{ and } T_2 = 1$
Perrin	$R_n = R_{n-2} + R_{n-3}$	$R_0 = 3, R_1 = 0, \text{ and } R_2 = 2$
Padovan	$P_n = P_{n-2} + P_{n-3}$	$P_0 = 1, P_1 = 1, \text{ and } P_2 = 1.$

Table 1. Generalizations of the Fibonacci sequence

- Luca [5] found repdigits in the Fibonacci and Lucas sequences.
- Marques and Togbé [9] handled the equation

$$F_n F_{n+1} \dots F_{n+k-1} = d\left(\frac{10^m - 1}{9}\right)$$

• The equation

$$L_n L_{n+1} \dots L_{n+k-1} = d\left(\frac{10^m - 1}{9}\right)$$

was solved by Irmak and Togbé [4].

There are also several results including sum of the members of linear recurrences (given in the table) which are repdigits (see the papers [1, 2, 10-14]).

Motivated by these papers, it is natural to ask the following question:

What factorials are repdigits in base b?

We answer this question by proving the following theorem.

Theorem 1.1. Let $b \in \{2, 3, ..., 9\}$ and x, m be positive integers. The solutions of the equation

$$(x)_{h} = m!$$

are given by $(11)_5 = 3!$, $(33)_7 = (44)_5 = 4!$.

To prove this theorem, we will characterize and use the 2-adic values $\nu_2 (b^n - 1)$. The *p*-adic order, $\nu_p(r)$ of *r* is the exponent of the highest power of a prime *p* which divides *r*.

2 Auxiliary results

Now, we will give the 2-adic order of the term $b^n - 1$, for $b \in \{2, 3, ..., 9\}$ by proving the following theorem. It is obvious that $\nu_2(b^k - 1) = 0$ for even b.

Theorem 2.1. For $k \ge 1$, we have (i)

$$\nu_2\left(3^k-1\right) = \begin{cases} \nu_2\left(k\right)+2, & \text{if } k \text{ is even} \\ 1, & \text{if } k \text{ is odd} \end{cases}$$

(ii)

$$\nu_{2}\left(5^{k}-1\right) = \begin{cases} \nu_{2}\left(k\right)+2, & \text{if } k \text{ is even} \\ 1, & \text{if } k \text{ is odd} \end{cases}$$

(iii)

$$u_2\left(7^k-1
ight) = \left\{egin{array}{cc}
u_2\left(k
ight)+1, & \textit{if }k \textit{ is even} \\
1, & \textit{if }k \textit{ is odd} \end{array}
ight.$$

(iv)

$$u_2\left(9^k-1
ight) = \left\{ egin{array}{ll}
u_2\left(k
ight)+3, & \textit{if }k \textit{ is even} \\
1, & \textit{if }k \textit{ is odd.} \end{array}
ight.$$

Proof. Firstly, we will deal with the first 2-adic order. Assume that k is even positive integer. To prove it, we need to show that

$$3^{2^{k_s}} - 1 \equiv 2^{k+2s} \pmod{2^{k+3}}.$$

We will use the induction on s to prove the congruence. Firstly, we will deal with the basic case s = 1. So, we want to prove that

$$3^{2^k} - 1 \equiv 2^{k+2} \pmod{2^{k+3}}$$

Now, we will use the induction on k. Obviously, the congruence holds for k = 1. Then we suppose that the congruence

$$3^{2^k} - 1 \equiv 2^{k+2} \pmod{2^{k+3}} \tag{1}$$

is true for k. Our aim is to show that $3^{2^{k+1}} - 1 \equiv 2^{k+3} \pmod{2^{k+4}}$. The congruence (1) implies that

$$3^{2^k} = 2^{k+2} + 1 + l_1 2^{k+3}, (2)$$

for some l_1 . So, we deduce that

$$3^{2^{k+1}} = \left(3^{2^k}\right)^2 = \left(2^{k+2} + 1 + l_1 2^{k+3}\right)^2$$
$$= 2^{2(k+3)}l_1^2 + 2^{2(k+3)}l_1 + 2^{2(k+2)} + 2^{k+4}l_1 + 2^{k+3} + 1$$

and this gives

$$3^{2^{k+1}} - 1 \equiv 2^{k+3} \pmod{2^{k+4}}$$

as desired. Here, we used the facts that $2k + 6 \ge k + 3$ and $2k + 4 \ge k + 3$, for $k \ge 1$.

By the induction hypothesis, $3^{2^{k_s}} - 1 \equiv 2^{k+2s} \pmod{2^{k+3}}$ holds for s. It means that there exists the integer l_2 such that $3^{2^{k_s}} = 2^{k+2s} + l_2 2^{k+2} + 1$. From this and (2), we deduce that

$$3^{2^{k}(s+1)} = 3^{2^{k_{s}}} \cdot 3^{2^{k}}$$

= $(2^{k+2}s + l_{2}2^{k+2} + 1) (2^{k+2} + 1 + l_{1}2^{k+3}).$

$$3^{2^{k}(s+1)} - 1 \equiv 2^{k+2} (s+1) \pmod{2^{k+3}}$$

follows.

From now on, suppose that k is odd. Our aim is to show that

$$3^{2w+1} - 1 \equiv 2 \pmod{4}.$$
 (3)

We use the induction method again. It is easy to see that the congruence holds for w = 1. Then assume that it is true for w. If we multiply the congruence (3) with 9, then the congruence

$$3^{2w+3} - 1 \equiv 2 \pmod{4}$$

holds as claimed. This finished the proof. The remaining items can be similarly proven. Therefore, we leave the details to the reader. \Box

The following lemma gives the upper and lower bounds for the term $\nu_p(k!)$. To prove this, we refer to Lemma 2.2 in [7].

Lemma 2.1. For any integer $k \ge 1$ and p prime, we have

$$\frac{k}{p-1} - \left\lfloor \frac{\log k}{\log p} \right\rfloor \le \nu_p \left(k!\right) \le \frac{k-1}{p-1},$$

where |x| denotes the largest integer less than or equal to x.

3 Proof of Theorem

Assume that $(x)_b = d\left(\frac{b^k-1}{b-1}\right)$ for $d \in \{1, 2, \dots, 9\}$ and $b \in \{2, \dots, 9\}$. By using Lemma 2.1 with Theorem 2.1, we have

$$m - \left\lfloor \frac{\log m}{\log 2} \right\rfloor \leq \nu_2(m!) = \nu_2 \left(d \frac{b^k - 1}{b - 1} \right)$$
$$\leq \nu_2(k) + 3 + \nu_2(d) \leq \nu_2(k) + 6.$$

It means that $2^{m-6-\lfloor \frac{\log m}{\log 2} \rfloor}$ divides k. Then

$$2^{m-6-\left\lfloor\frac{\log m}{\log 2}\right\rfloor} \le k \tag{4}$$

follows. It is known that $m! < \left(\frac{m}{2}\right)^m$. This fact gives

$$(k-1)\log b < \log\left(d\frac{b^k-1}{b-1}\right) < m\left(\log\frac{m}{2}\right).$$
(5)

Combining (4) and (5), we arrive at

$$2^{m-6-\left\lfloor\frac{\log m}{\log 2}\right\rfloor} < \frac{m\log\left(\frac{m}{2}\right)}{\log b} + 1.$$

This inequality implies that $m \le 14$ for $b \in \{2, \dots, 9\}$. We use a simple routine written in *Mathematica* which gives the solutions as listed in Theorem 1.1. The proof of our main result is complete.

References

- [1] Adegbindin, C., Luca, F., & Togbé, A. (2019). Lucas numbers as sums of two repdigits. *Lithuanian Mathematical Journal*, 59, 295–304.
- [2] Adegbindin, C., Luca, F., & Togbé, A. (2020). Pell and Pell–Lucas numbers as sums of two repdigits. *Bulletin of the Malaysian Mathematical Sciences Society, Series 2*, 43(2), 1253–1271.
- [3] Irmak, N. (2019). On factorials in Perrin and Padovan sequences. *Turkish Journal of Mathematics* 43, 2602–2609.
- [4] Irmak, N., & Togbé, A. (2018). On repdigits as product of consecutive Lucas Numbers. Notes on Number Theory and Discrete Mathematics, 24(3), 95–102.
- [5] Luca, F. (2000). Fibonacci and Lucas numbers with only one distinct digit. *Portugaliae Mathematica*, 50, 243–254.
- [6] Luca, F., Normenyo, B. V., & Togbé, A. (2019). Repdigits as sums of four Pell numbers. Boletín de la Sociedad Matemática Mexicana, 25(2), 249–266.
- [7] Marques, D. (2012). The order of appearance of product of consecutive Fibonacci numbers. *Fibonacci Quarterly*, 50, 132–139.
- [8] Marques, D., & Lengyel, T. (2014). The 2-adic Order of the Tribonacci Numbers and the Equation $T_n = m!$. Journal of Integer Sequences, 17, Article 14.10.1.
- [9] Marques, D., & Togbé, A. (2012). On repdigits as product of consecutive Fibonacci numbers. *Rendiconti dell'Istituto di matematica dell'Universit di Trieste*, 44, 393–397.
- [10] Normenyo, B. V., Luca, F., & Togbé, A. (2018). Repdigits as Sums of Four Fibonacci or Lucas Numbers. *Journal of Integer Sequences*, 21, Article 18.7.7.
- [11] Rayaguru, S. G., & Panda, G. K. (2018). Repdigits as products of consecutive balancing or Lucas-balancing numbers. *Fibonacci Quarterly*, 56(4), 319–324.
- [12] Rayaguru, S. G., & Panda, G. K. (2021). Repdigits as sums of two associated Pell numbers. *Appl. Math. E-notes*, 21, 402–409.
- [13] Rayaguru, S. G., & Panda, G. K. (2021). Balancing and Lucas-Balancing numbers expressible as sum of two repdigits. *Integers*, 21, A7.
- [14] Siar, Z., & Keskin, R. (2020). Repdigits as sums of two Lucas numbers. Applied Mathematics E-Notes, 20, 33–38.