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Abstract: Let b € {2,3,...,9}. In this paper, we show that the solutions of the equation
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1 Introduction

Let (Fn)n20 be the Fibonacci sequence given by F,, = F,,_1 + F},_o, forn > 0, with F; = 0 and
F} = 1. The first few terms of this sequence are

0,1,1,2,3,5,8,13,21,34,55, .. ..

The following Table 1 shows several generalizations of the Fibonacci sequence.

Finding special properties in these sequences is a very interesting problem. A number of
mathematicians studied equations involving the above sequences, repdigits and factorials. For
example,

e Marques and Lengyel [8] solved the equation 7,, = m!.

e Irmak [3] found the solutions of the equation w,, = m!, where w,, is the n-th term of Perrin
or Padovan sequence.
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Sequence | Recurrence relation Initial conditions

Lucas L,=L, 1+ L,_5 Ly=2and L, =1

Pell P,=2P, 1+ P, 5 FPh=0and P, =1
Pell-Lucas | @, = 2Q,—1 + Qn—2 Qo=2and Q) =2
Balancing | B, = 68,1 — B,,—» By=0and B; =1
Jacobshtal | J, = J,_1 +2J,_9 Jo=0and J; =1
Tribonacci | T, =T, 1+ 1T, o+T, 3| To=0,Ti=1,and Ty, = 1
Perrin R,=R, 2+ R,_3 Ry=3, R =0,and R, =2
Padovan P,=P, o+ P, 3 FP=1P =1and P, = 1.

Table 1. Generalizations of the Fibonacci sequence

e Luca [5] found repdigits in the Fibonacci and Lucas sequences.

e Marques and Togbé [9] handled the equation

10m —1
FnFn+1...Fn+k-,1 :d( 9 ) .

e The equation

10m —1
LnLn+1 N Ln+k,1 - d ( 9 )

was solved by Irmak and Togbé [4].

There are also several results including sum of the members of linear recurrences (given in
the table) which are repdigits (see the papers [1,2,10-14]).
Motivated by these papers, it is natural to ask the following question:

What factorials are repdigits in base b?

We answer this question by proving the following theorem.

Theorem 1.1. Let b € {2,3,...,9} and x, m be positive integers. The solutions of the equation
(), = m!
are given by (11), = 3!, (33), = (44), = 4!.

To prove this theorem, we will characterize and use the 2-adic values 15 (0" — 1) . The p-adic
order, v,(r) of r is the exponent of the highest power of a prime p which divides .

2 Auxiliary results

Now, we will give the 2-adic order of the term ™ — 1, for b € {2,3,...,9} by proving the
following theorem. It is obvious that v5(b* — 1) = 0 for even b.
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Theorem 2.1. For k > 1, we have

(i)
Vs (3k _ 1) _ ) 2 (k) + 2, lfk‘ l.S even
L, if k is odd

(ii)
v (55 —1) = vy (k) +2, lfk l.S even
L if k is odd

(iii)
Vo (7k _ 1) _J) (k) +1, lfk l's even
L, if k is odd

(iv)

k)+3, ifki
I o
1, if k is odd.

Proof. Firstly, we will deal with the first 2-adic order. Assume that £ is even positive integer. To
prove it, we need to show that

32% _ 1 = 2kt (mod 25+3).

We will use the induction on s to prove the congruence. Firstly, we will deal with the basic case
s = 1. So, we want to prove that

32" — 1 =22 (mod 2"3).

Now, we will use the induction on k. Obviously, the congruence holds for £ = 1. Then we
suppose that the congruence
32" 1 =22 (mod 2"9) (1)

is true for k. Our aim is to show that 327" — 1 = 283 (mod 2¥**). The congruence (1) implies
that
3% = o2 1 41,25, 2)

for some [;. So, we deduce that
32— (32'“)2 — (27 4 1 41,283’
22(/4:-}-3)[% 4 22(k+3)ll + 22(k+2) + 2k+4ll + 2k‘+3 + 1

and this gives
32 1 = k3 (mod 25+

as desired. Here, we used the facts that 2k +6 > k+3and 2k +4 > k + 3, for k > 1.
By the induction hypothesis, 32" — 1 = 2¥*2s (mod 2"+3) holds for s. It means that there
exists the integer I, such that 32°% = 28+25 4+ [,9%%2 1 1. From this and (2), we deduce that

32k(s+1) _ 32ks_32k

= (2" 12" 1) (282 4 1 4 1280
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So,
328 (s+1) _ 1 = ok+2 (s+1) (mod 2k+3)

follows.
From now on, suppose that & is odd. Our aim is to show that

32t —1=2 (mod 4). 3)

We use the induction method again. It is easy to see that the congruence holds for w = 1. Then
assume that it is true for w. If we multiply the congruence (3) with 9, then the congruence

32t _1=2 (mod 4)

holds as claimed. This finished the proof. The remaining items can be similarly proven. Therefore,
we leave the details to the reader. []

The following lemma gives the upper and lower bounds for the term v,(k!). To prove this, we
refer to Lemma 2.2 in [7].

Lemma 2.1. For any integer k > 1 and p prime, we have

k B log k <Vp(/€!)§u,
p—1 log p

where | x| denotes the largest integer less than or equal to .

3 Proof of Theorem

Assume that (z), = d (f_—‘f) ford € {1,2,...,9} and b € {2,...,9}. By using Lemma 2.1
with Theorem 2.1, we have

logm v —1
m — \‘loggQJ < I/2<m!)_l/2(db_1)

< vy (k)+3+1a(d) <w(k)+6.

It means that 2™ %~ [ %% ] divides k. Then

log m

om=6- %55 < ko 4)

follows. It is known that m! < (%)™ . This fact gives

v —1
(k—1)logb <log | d <m <log T) : (5)
b—1 2
Combining (4) and (5), we arrive at
gm-o-[ ez _ mlog(5) () 1
logb
This inequality implies that m < 14 for b € {2,...,9}. We use a simple routine written in

Mathematica which gives the solutions as listed in Theorem 1.1. The proof of our main result is
complete. U
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