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Abstract: Let b ∈ {2, 3, . . . , 9} . In this paper, we show that the solutions of the equation
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1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn = Fn−1 + Fn−2, for n ≥ 0, with F0 = 0 and
F1 = 1. The first few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

The following Table 1 shows several generalizations of the Fibonacci sequence.
Finding special properties in these sequences is a very interesting problem. A number of

mathematicians studied equations involving the above sequences, repdigits and factorials. For
example,

• Marques and Lengyel [8] solved the equation Tn = m!.

• Irmak [3] found the solutions of the equation wn = m!, where wn is the n-th term of Perrin
or Padovan sequence.
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Sequence Recurrence relation Initial conditions
Lucas Ln = Ln−1 + Ln−2 L0 = 2 and L1 = 1

Pell Pn = 2Pn−1 + Pn−2 P0 = 0 and P1 = 1

Pell–Lucas Qn = 2Qn−1 +Qn−2 Q0 = 2 and Q1 = 2

Balancing Bn = 6Bn−1 −Bn−2 B0 = 0 and B1 = 1

Jacobshtal Jn = Jn−1 + 2Jn−2 J0 = 0 and J1 = 1

Tribonacci Tn = Tn−1 + Tn−2 + Tn−3 T0 = 0, T1 = 1, and T2 = 1

Perrin Rn = Rn−2 +Rn−3 R0 = 3, R1 = 0, and R2 = 2

Padovan Pn = Pn−2 + Pn−3 P0 = 1, P1 = 1, and P2 = 1.

Table 1. Generalizations of the Fibonacci sequence

• Luca [5] found repdigits in the Fibonacci and Lucas sequences.

• Marques and Togbé [9] handled the equation

FnFn+1 . . . Fn+k−1 = d

(
10m − 1

9

)
.

• The equation

LnLn+1 . . . Ln+k−1 = d

(
10m − 1

9

)
was solved by Irmak and Togbé [4].

There are also several results including sum of the members of linear recurrences (given in
the table) which are repdigits (see the papers [1, 2, 10–14]).

Motivated by these papers, it is natural to ask the following question:

What factorials are repdigits in base b?

We answer this question by proving the following theorem.

Theorem 1.1. Let b ∈ {2, 3, . . . , 9} and x, m be positive integers. The solutions of the equation

(x)b = m!

are given by (11)5 = 3!, (33)7 = (44)5 = 4!.

To prove this theorem, we will characterize and use the 2-adic values ν2 (bn − 1) . The p-adic
order, νp(r) of r is the exponent of the highest power of a prime p which divides r.

2 Auxiliary results

Now, we will give the 2-adic order of the term bn − 1, for b ∈ {2, 3, . . . , 9} by proving the
following theorem. It is obvious that ν2(bk − 1) = 0 for even b.
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Theorem 2.1. For k ≥ 1, we have
(i)

ν2
(
3k − 1

)
=

{
ν2 (k) + 2, if k is even

1, if k is odd

(ii)

ν2
(
5k − 1

)
=

{
ν2 (k) + 2, if k is even

1, if k is odd

(iii)

ν2
(
7k − 1

)
=

{
ν2 (k) + 1, if k is even

1, if k is odd

(iv)

ν2
(
9k − 1

)
=

{
ν2 (k) + 3, if k is even

1, if k is odd.

Proof. Firstly, we will deal with the first 2-adic order. Assume that k is even positive integer. To
prove it, we need to show that

32
ks − 1 ≡ 2k+2s (mod 2k+3).

We will use the induction on s to prove the congruence. Firstly, we will deal with the basic case
s = 1. So, we want to prove that

32
k − 1 ≡ 2k+2 (mod 2k+3).

Now, we will use the induction on k. Obviously, the congruence holds for k = 1. Then we
suppose that the congruence

32
k − 1 ≡ 2k+2 (mod 2k+3) (1)

is true for k. Our aim is to show that 32k+1 − 1 ≡ 2k+3 (mod 2k+4). The congruence (1) implies
that

32
k

= 2k+2 + 1 + l12
k+3, (2)

for some l1. So, we deduce that

32
k+1

=
(
32

k
)2

=
(
2k+2 + 1 + l12

k+3
)2

= 22(k+3)l21 + 22(k+3)l1 + 22(k+2) + 2k+4l1 + 2k+3 + 1

and this gives
32

k+1 − 1 ≡ 2k+3 (mod 2k+4)

as desired. Here, we used the facts that 2k + 6 ≥ k + 3 and 2k + 4 ≥ k + 3, for k ≥ 1.

By the induction hypothesis, 32ks − 1 ≡ 2k+2s (mod 2k+3) holds for s. It means that there
exists the integer l2 such that 32ks = 2k+2s+ l22

k+2 + 1. From this and (2), we deduce that

32
k(s+1) = 32

ks · 32k

=
(
2k+2s+ l22

k+2 + 1
) (

2k+2 + 1 + l12
k+3
)
.
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So,
32

k(s+1) − 1 ≡ 2k+2 (s+ 1) (mod 2k+3)

follows.
From now on, suppose that k is odd. Our aim is to show that

32w+1 − 1 ≡ 2 (mod 4). (3)

We use the induction method again. It is easy to see that the congruence holds for w = 1. Then
assume that it is true for w. If we multiply the congruence (3) with 9, then the congruence

32w+3 − 1 ≡ 2 (mod 4)

holds as claimed. This finished the proof. The remaining items can be similarly proven. Therefore,
we leave the details to the reader.

The following lemma gives the upper and lower bounds for the term νp(k!). To prove this, we
refer to Lemma 2.2 in [7].

Lemma 2.1. For any integer k ≥ 1 and p prime, we have

k

p− 1
−
⌊
log k

log p

⌋
≤ νp (k!) ≤

k − 1

p− 1
,

where bxc denotes the largest integer less than or equal to x.

3 Proof of Theorem

Assume that (x)b = d
(

bk−1
b−1

)
for d ∈ {1, 2, . . . , 9} and b ∈ {2, . . . , 9} . By using Lemma 2.1

with Theorem 2.1, we have

m−
⌊
logm

log 2

⌋
≤ ν2 (m!) = ν2

(
d
bk − 1

b− 1

)
≤ ν2 (k) + 3 + ν2 (d) ≤ ν2 (k) + 6.

It means that 2m−6−b logm
log 2 c divides k. Then

2m−6−b logm
log 2 c ≤ k (4)

follows. It is known that m! <
(
m
2

)m
. This fact gives

(k − 1) log b < log

(
d
bk − 1

b− 1

)
< m

(
log

m

2

)
. (5)

Combining (4) and (5), we arrive at

2m−6−b logm
log 2 c <

m log
(
m
2

)
log b

+ 1.

This inequality implies that m ≤ 14 for b ∈ {2, . . . , 9} . We use a simple routine written in
Mathematica which gives the solutions as listed in Theorem 1.1. The proof of our main result is
complete. �
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