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1 Introduction

The hybrid number system can be accepted as a generalization of the complex, dual and hyperbolic
number systems. In 2018, firstly, set of hybrid numbers was introduced by Özdemir [9] as follows:

K ={ a+ b i + c ε + d h |a, b, c, d ∈ R, i2 = −1 , ε2 = 0 , h2 = 1 },

where units satisfy the rules
i h = −h i = ε+ i .

The set K of hybrid numbers forms non-commutative ring with respect to the addition and
multiplication operations.

Taking two hybrid numbers z1 = a1 + b1 i+ c1 ε+ d1 h, z2 = a2 + b2 i+ c2 ε+ d2 h and
s ∈ R get:
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• Equality z1 = z2, if and only if, a1 = a2, b1 = b2, c1 = c2, and d1 = d2;

• Sum z1 + z2 = (a1 + a2) + (b1 + b2) i+ (c1 + c2) ε+ (d1 + d2)h;

• Subtraction z1 − z2 = (a1 − a2) + (b1 − b2) i+ (c1 − c2) ε+ (d1 − d2)h;

• Multiplication by scalar s.z = s.a+ s.b i+ s.c ε+ s.d h.

The real numberC(z) = z.z = z.z = a2 + (b− c)2 − c2 − d2 is called the character of the hybrid
number z. A new expression for the character of a hybrid number z is given by

C(z) = (a− b)2 − 2 b(c− a)− d2 (1)

The hybrid matrix corresponding to the hybrid number z is given by following 2× 2 matrix

A =

(
a+ c b− c+ d

c− b+ d a− c

)
. (2)

For more details on hybrid numbers, see [2, 9].
In 2007, the k-Fibonacci sequence {Fk,n}n∈N is defined by Falcon and Plaza [4–8] as follows

Fk,0 = 0, Fk,1 = 1

Fk,n+1 = k Fk,n + Fk,n−1, n ≥ 1

or

{Fk,n}n∈N = { 0, 1, k, k2 + 1, k3 + 2 k, k4 + 3 k2 + 1, . . .}

(3)

Here, k is a positive real number.
In 2015, Ramirez [10] defined the the k-Fibonacci and the k-Lucas quaternions. For more

details about these quaternions see, for example, [1, 10, 11].
In 2018, Cerda-Morales [3] defined the generalized hybrid Fibonacci numbers.
The aim of this study is to define k-Fibonacci hybrid numbers and give their algebraic

properties by using hybrid numbers based on Özdemir’s study in [9].

2 The k-Fibonacci hybrid numbers

In this section, firstly the k-Fibonacci hybrid numbers will be defined as follows:

HF k,n = Fk,n + i Fk,n+1 + ε Fk,n+2 + hFk,n+3 (4)

where units satisfy the rules as follows

i2 = −1, ε2 = 0, h2 = 1, i h = −h i = i+ ε, ε i = 1+ h, i ε = 1− h, ε h = −h ε = ε . (5)

where h i+ ε+ i = 0.
Similarly, the k-Lucas hybrid numbers will be defined as follows:

HLk,n = Lk,n + i Lk,n+1 + εLk,n+2 + hLk,n+3 (6)

where (5) conditions are satisfied.
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The k-Fibonacci hybrid sequence HF k,n satisfies the recurrence relationship

HF k,n = k HF k,n−1 +HF k,n−2. (7)

with initial conditions

HF k,0 = i+ ε k + h (k2 + 1), and

HF k,1 = 1 + i k + ε (k2 + 1) + h (k3 + 2k).

Similarly, The k-Lucas hybrid sequence HLk,n satisfies the recurrence relationship

HLk,n = k HLk,n−1 +HLk,n−2. (8)

with initial conditions

HLk,0 = 2 + k i+ ε (k2 + 2) + h (k3 + 3 k), and

HLk,1 = k + i (k2 + 2) + ε (k3 + 3 k) + h (k4 + 4k2 + 2).

Taking into account (1), the norm and character of a k-Fibonacci hybrid number is given as

‖HF k,n‖2 = C(HF k,n) (9)

where C(HF k,n) = (Fk,n − Fk,n+1)
2 − 2Fk,n+1(Fk,n+2 − Fk,n)− F 2

k,n+3.
Let HF k,n and HF k,m be two k-Fibonacci hybrid numbers. The addition and subtraction of

two k-Fibonacci hybrid numbers are defined in the obvious way,

HF k,n ±HF k,m = (Fk,n + i Fk,n+1 + εFk,n+2 + hFk,n+3)

±(Fk,m + i Fk,m+1 + εFk,m+2 + hFk,m+3)

= (Fk,n ± Fk,m) + i (Fk,n+1 ± Fk,m+1)

+ε(Fk,n+2 ± Fk,m+2) + h (Fk,n+3 ± Fk,m+3).

(10)

Accordingly, we will use table below (Table 1) for the multiplication of any two hybrid
numbers. This table shows us that the multiplication operation in the hybrid numbers is not
commutative. But it has the property of associativity.

x 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε 1 + h 0 −ε
h h −ε− i ε 1

Table 1: Multiplication scheme of hybrid numbers [1]

Multiplication of two k-Fibonacci hybrid numbers, which are non-commutative is defined by

HF k,n × HF k,m = [Fk,n Fk,m − Fk,n+1 Fk,m+1 − Fk,n+2 Fk,m+2 + Fk,n+3 Fk,m+3]

+i [Fk,n Fk,m+1 + Fk,n+1 Fk,m − Fk,n+2 Fk,m+3 − Fk,n+3 Fk,m+2]

+ε[Fk,n Fk,m+2 − Fk,n+1 Fk,m+3 + Fk,n+2 Fk,m − Fk,n+3 Fk,m+1]

+h [Fk,n Fk,m+3 + Fk,n+1 Fk,m+2 + Fk,n+2 Fk,m+1 + Fk,n+3 Fk,m]

6= HF k,m × HF k,n.

(11)
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The conjugation of the k-Fibonacci hybrid number is defined as follows

HF k,n =Fk,n − i Fk,n+1 − εFk,n+2 − hFk,n+3, (12)

Therefore, the norm of the k-Fibonacci hybrid number HF k,n is defined as follows

‖HF k,n‖2 = HF k,n . HF k,n

= F 2
k,n + F 2

k,n+1 − F 2
k,n+3 − 2Fk,n+1 Fk,n+2.

(13)

In the following theorem, some properties related to the k-Fibonacci hybrid numbers are given.

Theorem 1. LetHF k,n be the k-Fibonacci hybrid number. In this case, we can give the following
relations:

HF k,n+2 = k HF k,n+1 +HF k,n , (14)

HLk,n = HF k,n+1 +HF k,n−1 , (15)

k HLk,n = HF k,n+2 −HF k,n−2 . (16)

Proof: (14): By using (4) we get,

HF k,n + k HF k,n+1 = (Fk,n + k Fk,n+1) + i (Fk,n+1 + k Fk,n+2)

+ε(Fk,n+2 + k Fk,n+3) + h (Fk,n+3 + k Fk,n+4)

= Fk,n+2 + i Fk,n+3 + εFk,n+4 + hFk,n+5

= HF k,n+2

(15): By using (4) we get,

HF k,n+1 +HF k,n−1 = (Fk,n+1 + Fk,n−1) + i (Fk,n+2 + Fk,n)

+ε(Fk,n+3 + Fk,n+1) + h (Fk,n+4 + Fk,n+2)

= Lk,n + i Lk,n+1 + εLk,n+2 + hLk,n+3

= HLk,n

(16): By using (4) we get,

HF k,n+2 −HF k,n−2 = (Fk,n+2 − Fk,n−2) + i (Fk,n+3 − Fk,n−1)
+ε(Fk,n+4 − Fk,n) + h (Fk,n+5 + Fk,n+1)

= k [Lk,n + i Lk,n+1 + εLk,n+2 + hLk,n+3]

= k HLk,n

where Fk,n+1 + Fk,n−1 = Lk,n and Fk,n+2 − Fk,n−2 = k Lk,n are used. �

Theorem 2 (Honsberger identity). For n,m ≥ 0 the Honsberger identity for the k-Fibonacci
hybrid numbers HF k,n and HF k,m is given by

HF k,nHF k,m +HF k,n+1HF k,m+1 = HF k,n+m+1 + (−Fk,n+m+3 + 2Fk,n+m+4

+Fk,n+m+7) + Fk,n+m+2 i+ Fk,n+m+3 ε

+Fk,n+m+4 h .

(17)
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Proof: (17): By using (4) we get,

HF k,nHF k,m +HF k,n+1HF k,m+1

= [ (Fk,nFk,m + Fk,n+1Fk,m+1)− (Fk,n+1Fk,m+1 + Fk,n+2Fk,m+2)

+(Fk,n+3Fk,m+3 + Fk,n+4Fk,m+4) + (Fk,n+1Fk,m+2 + Fk,n+2Fk,m+2)

+(Fk,n+2Fk,m+1 + Fk,n+3Fk,m+1) ]

+ i [ (Fk,nFk,m+1 + Fk,n+1Fk,m+2) + (Fk,n+1Fk,m − Fk,n+2Fk,m+1)

+(Fk,n+1Fk,m+3 + Fk,n+2Fk,m+4)− (Fk,n+3Fk,m+1 + Fk,n+4Fk,m+2) ]

+ ε[ (Fk,nFk,m+2 + Fk,n+1Fk,m+3) + (Fk,n+2Fk,m + Fk,n+3Fk,m+1)

+(Fk,n+1Fk,m+3 + Fk,n+2Fk,m+4)− (Fk,n+3Fk,m+1 + Fk,n+4Fk,m+2) ]

−(Fk,n+2Fk,m+3 + Fk,n+3Fk,m+4) ] + (Fk,n+3Fk,m+2 + Fk,n+4Fk,m+3) ]

+h [ (Fk,nFk,m+3 + Fk,n+1Fk,m+4) + (Fk,n+3Fk,m + Fk,n+4Fk,m+1)

−(Fk,n+1Fk,m+2 + Fk,n+2Fk,m+3) + (Fk,n+2Fk,m+1 + Fk,n+3Fk,m+2) ]

= (Fk,n+m+1 − Fk,n+m+3 + 2Fk,n+m+4 + Fk,n+m+7)

+2 [Fk,n+m+2 i+ Fk,n+m+3 ε+ Fk,n+m+4 h ]

= HF k,n+m+1 + (−Fk,n+m+3 + 2Fk,n+m+4 + Fk,n+m+7)

+Fk,n+m+2 i+ Fk,n+m+3 ε+ Fk,n+m+4 h .

where the identity Fk,nFk,m + Fk,n+1Fk,m+1 = Fk,n+m+1 was used [5]. �

Theorem 3 (Generating function). Let HF k,n be the k-Fibonacci hybrid number. For the
generating function for these numbers is as follows:

gHFk,n(t) =
n∑
s=1

HF k,n t
n =

HF k,0 + (HF k,1 − k HF k,0) t

1− k t− t2
(18)

Proof: Using the definition of generating function, we obtain

gHFk,n(t) = HF k,0 +HF k,1 t+ · · · +HF k,n t
n + · · · . (19)

Multiplying (1− k t− t2) both sides of (19) and using (3) and (14), we have

(1− k t− t2) gHFk,n(t) = HF k,0 + t (HF k,1 − k HF k,0)

+t2 (HF k,2 − k HF k,1 −HF k,0) + · · ·
+tn+1 (HF k,n+1 − k HF k,n −HF k,n−1) + · · ·

= HF k,0 + t (HF k,1 − k HF k,0) + 0 + 0 + · · ·

where

−k t gHFk,n(t) = −k tHF k,0 − k t2HF k,1 − . . . − k tn+1HF k,n − · · · ,
−t2 gHFk,n(t) = −t2HF k,0 − t3HF k,1 − · · · − tn+1HF k,n−1 − · · ·

and
HF k,n+1 − k HF k,n −HF k,n−1 = 0

are used. Thus, the proof is completed. �
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Theorem 4 (Binet’s Formula). Let HF k,n be the k-Fibonacci hybrid number. For n ≥ 1,
Binet’s formula for these numbers is as follows:

HF k,n =
1

α− β

(
α̂ αn − β̂ βn

)
(20)

where
α̂ = 1 + (k − β) i+ (k2 − k β + 1) ε+ (k3 − (k2 + 1) β + 2 k)h

= 1 + i α+ εα2 + hα3 ,

−β̂ = 1 + (k − α) i+ (k2 − α k + 1) ε+ (k3 − (k2 + 1)α + 2 k)h

= 1 + i β + εβ2 + hβ3 ,

α = k+
√
k2+4
2

, β = k−
√
k2+4
2

, α + β = k , α− β =
√
k2 + 4 , αβ = −1.

Proof: Using the Binet formula for k-Fibonacci number [5], we obtain

HF k,n = Fk,n + i Fk,n+1 + εFk,n+2 + hFk,n+3

= αn−βn√
k2+4

+ i (α
n+1−βn+1
√
k2+4

) + ε(α
n+2−βn+2
√
k2+4

) + h (α
n+3−βn+3
√
k2+4

)

= αn (1+i α+εα2+hα3)−βn (1+i β+εβ2+hβ3)√
k2+4

= 1√
k2+4

( α̂ αn − β̂ βn).

where α̂ = 1 + i α+ εα2 + hα3, β̂ = 1 + i β + εβ2 + hβ3. �

Theorem 5 (d’Ocagne’s identity). For n,m ≥ 0 the D’Ocagne’s identity for the k-Fibonacci
hybrid numbers HF k,n and HF k,m is given by

HF k,nHF k,m+1 −HF k,n+1HF k,m = (−1)m [ (1− k)Fk,n−m
+k (Fk,n−m + Lk,n−m) i+ (Lk,n−m) ε

+(3 k Fk,n−m + (k2 − 1)Lk,n−m )h ]

or

= (−1)m α̂ β̂ (αn−m−βn−m)
α−β .

(21)

Proof: (21) By using (4) we get,

HF k,nHF k,m+1 −HF k,n+1HF k,m

= [ (Fk,nFk,m+1 − Fk,n+1Fk,m)− (Fk,n+1Fk,m+2 − Fk,n+2Fk,m+1)

+(Fk,n+3Fk,m+4 − Fk,n+4Fk,m+3) + (Fk,n+1Fk,m+3 − Fk,n+2Fk,m+2)

+(Fk,n+2Fk,m+2 − Fk,n+3Fk,m+1) ]

+ i [ (Fk,nFk,m+2 − Fk,n+1Fk,m+1) + (Fk,n+1Fk,m+1 − Fk,n+2Fk,m)

−(Fk,n+3Fk,m+2 − Fk,n+4Fk,m+1) + (Fk,n+1Fk,m+4 − Fk,n+2Fk,m+3) ]

+ ε[ (Fk,nFk,m+3 − Fk,n+1Fk,m+2) + (Fk,n+2Fk,m+1 − Fk,n+3Fk,m)

+(Fk,n+1Fk,m+4 − Fk,n+2Fk,m+3)− (Fk,n+3Fk,m+2 − Fk,n+4Fk,m+1)

−(Fk,n+2Fk,m+4 − Fk,n+3Fk,m+3) + (Fk,n+3Fk,m+3 − Fk,n+4Fk,m+2) ]

+h [ (Fk,nFk,m+4 − Fk,n+1Fk,m+3) + (Fk,n+3Fk,m+1 − Fk,n+4Fk,m)

+(Fk,n+2Fk,m+2 − Fk,n+3Fk,m+1)− (Fk,n+1Fk,m+3 − Fk,n+2Fk,m+2) ]

= (−1)m [ (1− k)Fk,n−m + k (Fk,n−m + Lk,n−m) i+ (Lk,n−m) ε

+(3 k Fk,n−m + (k2 − 1)Lk,n−m )h ] ,

where the identity Fk,nFk,m+1 − Fk,n+1Fk,m = (−1)mFk,n−m is used [5].
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We calculate (21) again with a second method. By using (20) we get

HF k,nHF k,m+1 −HF k,n+1HF k,m = ( α̂ α
n−β̂ βn
α−β )( α̂ α

m+1−β̂ βm+1

α−β )

−( α̂ αn+1−β̂ βn+1

α−β )( α̂ α
m−β̂ βm
α−β )

= −α̂ β̂ (αβ)−m αn βm+1−β̂ α̂ (αβ)−m βn αm+1

(α−β)2 (αβ)−m

+ α̂β̂ (αβ)−m αn+1 βm+β̂α̂ (αβ)−m βn+1 αm

(α−β)2 (αβ)−m

= −α̂ β̂ αn−m(α−β)−β̂ α̂ βn−m(α−β)
(α−β)2 (αβ)−m

= (−1)m α̂ β̂ (αn−m−βn−m)
α−β

where α̂ = 1 + i α+ εα2 + hα3 and −β̂ = 1 + i β + εβ2 + hβ3 . �

Theorem 6 (Cassini’s Identity). Let HF Fk,n be the k-Fibonacci hybrid number. For n ≥ 1,
Cassini’s identity for HF k,n is as follows:

HF k,n−1HF k,n+1 − (HF k,n)
2 = (−1)n [ (1− k) + k (1− k) i+ (2− k) ε+ (k3 + 4 k)h ]

or

= (−1)n [ s1 α2−s2 β2

k2+4
+ (HF k,1)

2 ] .
(22)

where s1 = (α̂β̂ − α̂2) , s2 = −(α̂β̂ − β̂2) .

Proof: (22): By using (4) we get

HF k,n−1HF k,n+1 − (HF k,n)
2

= [ (Fk,n−1Fk,n+1 − F 2
k,n)− (Fk,nFk,n+2 − F 2

k,n+1)

+(Fk,nFk,n+3 − Fk,n+1 Fk,n+2) + (Fk,n+2Fk,n+4 − F 2
k,n+3) ]

+ i [ (Fk,n−1Fk,n+2 − Fk,nFk,n+1) + (Fk,n+2Fk,n+2 − Fk,nFk,n+4) ]

+ ε [ (Fk,n−1Fk,n+3 − Fk,nFk,n+2)− (Fk,nFk,n+4 − Fk,n+2Fk,n+2)

+(Fk,n+1Fk,n+1 − Fk,n+2Fk,n) + (Fk,n+1Fk,n+4 − Fk,n+2Fk,n+3) ]

+h (Fk,n−1Fk,n+4 − Fk,nFk,n+3)

= (−1)n [ (1− k) + k (1− k) i+ (2− k) ε+ (k3 + 4 k)h ],

where the identities of the k-Fibonacci numbers Fk,n−1Fk,n+1 − F 2
k,n = (−1)n [5].

We calculate (22) again with a second method. By using (20) we get

HF k,n−1HF k,n+1 − (HF k,n)
2 = ( α̂ α

n−1−β̂ βn−1

α−β )( α̂ α
n+1−β̂ βn+1

α−β )− ( α̂ α
n−β̂ βn
α−β )2

=
α̂2 α2n+β̂2 β2n−α̂β̂(αβ)n( β

α
)−β̂α̂(αβ)n ( β

α
)

(α−β)2

−( α̂
2 α2n+β̂2 β2n−2α̂β̂(αβ)n

(α−β)2 )

= (αβ)n−1 [ −α̂ β̂β
2−β̂ α̂ α2+2α̂β̂(αβ)

(α−β)2 ]

= (αβ)n−1 [ (−β̂
2 (α̂β̂−β̂2)−α2 (α̂β̂−α̂2)

(α−β)2 − ( α̂ α−β̂ β
α−β )2 ]

= (−1)n [ s1 α2−s2 β2

k2+4
+ (HF k,1)

2 ],

where s1 = (α̂β̂−α̂2) , s2 = −(α̂β̂−β̂2) and α̂ = 1+i α+εα2+hα3 ,−β̂ = 1+i β+εβ2+hβ3 .
This completes the proof. �
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Theorem 7 (Catalan’s Identity). Let HF k,n+r be the k-Fibonacci hybrid number. For n ≥ 1,
Catalan’s identity for HF k,n+r is as follows:

HF k,n+r−1HF k,n+r+1 − (HF k,n+r)
2 = (−1)n+r [ (1− k) + k (1− k) i

+(2− k) ε+ (k3 + 4 k)h ]

or

= (−1)n+r [ s1 α2−s2 β2

k2+4
+ (HF k,1)

2 ] .

(23)

where s1 = (α̂β̂ − α̂2) , s2 = −(α̂β̂ − β̂2) .

Proof: (23) By using (4) we get

HF k,n+r−1HF k,n+r+1 − (HF k,n+r)
2

= [ (Fk,n+r−1Fk,n+r+1 − F 2
k,n+r)− (Fk,n+rFk,n+r+2 − F 2

k,n+r+1)

+(Fk,n+rFk,n+r+3 − Fk,n+r+1Fk,n+r+2) + (Fk,n+r+2Fk,n+r+4 − F 2
k,n+r+3) ]

+i [ (Fk,n+r−1Fk,n+r+2)− (Fk,n+rFk,n+r+1)− (Fk,n+r+1Fk,n+r+4 − Fk,n+r+1Fk,n+r+3)

−(Fk,n+r+2Fk,n+r+2 − Fk,n+r+3Fk,n+r+1) ]

+ε [ (Fk,n+r−1Fk,n+r+3 − Fk,n+rFk,n+r+2) + (Fk,n+rFk,n+r+4 − Fk,n+r+1Fk,n+r+3)

+(Fk,n+r+1Fk,n+r+1 − Fk,n+r+2Fk,n+r)− (Fk,n+r+1Fk,n+r+4 − Fk,n+r+2Fk,n+r+3)

−(Fk,n+r+2Fk,n+r+2 − Fk,n+r+3Fk,n+r+1) ]

+h [ (Fk,n+r−1Fk,n+r+4 − Fk,n+rFk,n+r+3)− (Fk,n+rFk,n+r+3 − Fk,n+r+1Fk,n+r+2)

+(Fk,n+r+2Fk,n+r+1 − Fk,n+r+3Fk,n+r) ]

= (−1)n+r [ (1− k) + k (1− k) i + (2− k)ε + (k3 + 4 k)h ],

where the identity of the k-Fibonacci numbers Fk,n+r−1Fk,n+r+1−F 2
k,n+r = (−1)n+r is used [5].

We calculate (23) again with a second method. By using (20) we get

HF k,n+r−1HF k,n+r+1 − (HF k,n+r)
2 = ( α̂ α

n+r−1−β̂ βn+r−1

α−β )( α̂ α
n+r+1−β̂ βn+r+1

α−β )

−( α̂ αn+r−β̂ βn+r
α−β )2

=
α̂2 α2(n+r)+β̂2 β2(n+r)−α̂β̂(αβ)n+r( β

α
)−β̂α̂(αβ)n+r (α

β
)

(α−β)2

−( α̂
2 α2(n+r)+β̂2 β2(n+r)−2α̂β̂(αβ)n+r

(α−β)2 )

= (αβ)n+r−1 [ α̂ β̂β
2−β̂ α̂ α2+2α̂β̂(αβ)

(α−β)2 ]

= (αβ)n+r−1 [ −β̂
2 (α̂β̂−β̂2)−α2 (α̂β̂−α̂2)

(α−β)2

−( α̂ α−β̂ β
α−β )2 ]

= (−1)n+r [ s1 α2−s2 β2

k2+4
+ (HF k,1)

2 ]

where s1 = (α̂β̂−α̂2) , s2 = −(α̂β̂−β̂2) and α̂ = 1+i α+εα2+hα3 ,−β̂ = 1+i β+εβ2+hβ3 .
This completes the proof. �
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3 The matrix of k-Fibonacci hybrid numbers

Using the norm of k-Fibonacci hybrid number, a 2× 2 matrix representation as follows:

‖HF k,n‖2 = F 2
k,n + F 2

k,n+1 − F 2
k,n+3 − 2Fk,n+1 Fk,n+2

= C(HF k,n)

= det(AHFk,n),

AHFk,n =

(
Fk,n + Fk,n+2 Fk,n+1 − Fk,n+2 + Fk,n+3

Fk,n+2 − Fk,n+1 + Fk,n+3 Fk,n − Fk,n+2

)

Therefore, there is an isomorphic representation from HF k,n to the set of all M2×2 matrices can
be defined as follows:

φ : HF k,n →M2×2

This transformation is one-to-one and onto. Thus, HF k,n and M2×2 are isomorphic.
Using the representations of hybrid numbers in [2], we can give 4 × 4 left and right

representations of the k-Fibonacci hybrid numbers.
4× 4 left matrix representation of k-Fibonacci hybrid number HF k,n is given by

LHFk,n : HF k,n →M(4,R)

LHFk,n =


Fk,n Fk,n+2 − Fk,n+1 Fk,n+1 Fk,n+3

Fk,n+1 Fk,n − Fk,n+3 0 Fk,n+1

Fk,n+2 −Fk,n+3 Fk,n + Fk,n+3 Fk,n+1 − Fk,n+2

Fk,n+3 Fk,n+2 −Fk,n+1 Fk,n


and 4× 4 the right matrix representation of k-Fibonacci hybrid number HF k,n is given by

RHFk,n : HF k,n →M(4,R)

RHFk,n =


Fk,n Fk,n+2 − Fk,n+1 Fk,n+1 Fk,n+3

Fk,n+1 Fk,n + Fk,n+3 0 −Fk,n+1

Fk,n+2 Fk,n+3 Fk,n − Fk,n+3 Fk,n+2 − Fk,n+1

Fk,n+3 −Fk,n+2 Fk,n+1 Fk,n

.
Also, we have detLHFk,n = detRHFk,n = ‖HF k,n‖4.

4 Conclusion

In this paper, we have examined the k-Fibonacci hybrid numbers, which are non-commutative.
Thus, we have derived several interesting properties of the k-Fibonacci hybrid numbers such as
Honsberger identity, Binet’s formula, generating functions, d’Ocagne’s identity, Cassini’s and
Catalan’s identities. Furthermore, the k-Fibonacci hybrid matrix was defined by obtaining the
2× 2 matrix representation of the k-Fibonacci hybrid number HF k,n .We also give 4× 4 matrix
representations of the k-Fibonacci hybrid numbers HF k,n.
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