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1 Introduction

Recurrence sequences have been a central part of number theory for many years. These sequences
are applied to many areas of mathematics and computer science. Linear recurrence sequences
have arisen in computer graphics, approximation theory, cryptography and time series analysis.
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Horadam sequence Wn (a, b; p, q), so named after the studies of A. F. Horadam begun in the
1960s, is a particular type of linear recurrence sequences. It gives rise to some well known
sequences such that Fibonacci, generalized Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal,
Jacobsthal–Lucas, Tagiuri, Fermat, Fermat–Lucas, and so on. These sequences have applications
in science and nature. For example, the applications of the golden ratio (the limit of the ratio
of two consecutive Fibonacci numbers) appear in many research areas, particularly in physics,
engineering, architecture, nature and art.

The Horadam sequence has ensured wide mathematical contribution to the academic
community, thus many publications either directly on, or relating to, have appeared in the literature,
[16–20, 27]. In [23] more general identities involving the terms Horadam sequence and in [3]
some generalizations of Horadam’s numbers are examined. Also, Horadam numbers are studied
in [34, 37].

On the other side, the set of generalized complex numbers is defined as, [15, 21]:

Cp: =
{
z = a1 + a2J | a1, a2 ∈ R, J2 = p ∈ R, J 6∈ R

}
.

The vector space Cp (over R) is analogue to complex numbers for p = −1, hyperbolic numbers
(double, split complex, perplex) for p = 1, and dual numbers for p = 0 (see details in [29,
31, 32, 35, 36]). Rebuilding new numbers with the coefficients of above number systems is an
attractive area for researchers and that enables to construct different types of number systems
(see in [1, 5, 6, 8–10, 21, 25, 26]).

In [12], as a new approach, dual-generalized complex (DGC), hyperbolic-generalized complex
(HGC) and complex-generalized complex (CGC) numbers are introduced by using the
Cayley–Dickson doubling procedure. For the special real values p = −1, p = 0 and p = 1,
dual-complex, hyper-dual, dual-hyperbolic, hyperbolic-complex, bihyperbolic and bicomplex
numbers are obtained from DGC,HGC and CGC numbers (see detailed classification in [12]). As
we move from number systems to elements of Horadam sequences, some papers can be examined
in literature, [2, 4, 7, 11, 13, 14, 24, 28, 33].

In this present study, firstly, algebraic properties and linear recurrence relations for DGC
Horadam numbers W̃n are introduced. Furthermore, generating functions, Binet’s formula,
D’Ocagne’s, Catalan’s and Cassini’s identities are computed for p ∈ R. With the same approach,
the fundamental formulas for Horadam numbers with HGC and CGC coefficients are stated. A
series of matrix representations of these Horadam numbers is examined. The multiplication
of Horadam numbers is also expressed as their matrix representations. The main importance
in carrying out this construction is that dual-complex, hyper-dual, dual-hyperbolic, hyperbolic-
complex, bihyperbolic and bicomplex Horadam numbers can be figured out by the readers for the
specific values p ∈ {−1, 0, 1}.

2 Basic concepts

In this part of the paper, we present some needed basic results related to Horadam sequence and
DGC,HGC and CGC numbers.
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2.1 Horadam numbers

Definition 2.1. For a, b, p, q ∈ Z, the generalized sequence of Wn (a, b; p, q), briefly Wn, satisfies
the following second order recurrence relation

Wn (a, b; p, q) = pWn−1 − qWn−2, (n ≥ 2) , (1)

where initial conditions W0 = a, W1 = b. In honor of Horadam, this general sequence is called
a Horadam sequence1, [18–20].

The characteristic equation related to the recurrence relation (1) is x2 − px + q = 0 with
characteristic roots α and β that satisfy:

α + β = p, αβ = q, α− β =
√
p2 − 4q. (2)

Then, the Binet’s formula of Horadam numbers is as follows:

Wn = Aαn +Bβn, (3)

where A =
b− aβ
α− β

and B =
aα− b
α− β

, [18].

Corollary 2.1. The following linear recurrence relations hold:

• Wn+2 = (p2 − q)Wn − pqWn−1, [19]

• pWn+2 = (p2 − q)Wn+1 − q2Wn−1, [19]

• (p2 − 2q)Wn+2 = q2Wn +Wn+4, [30],

• (p4 − 3p2q + q2)Wn+2 = (p2q2 − q3)Wn + pWn+5, [30],

• (p4 + 3q2 − 4p2q)Wn+2 = (p2q2 − 2q3)Wn +Wn+6, [30],

• (p4 − 5p4q + 6p2q2 − q3)Wn+2 = (p4q2 − 3p2q3 + q4)Wn + pWn+7, [30],

• Wk+n = (αn + βn)Wk − qnWk−n, [34].

Furthermore, the generating function of Horadam numbers is

g(x) =
∞∑
n=0

Wnx
n =

W0 + (W1 − pW0)x

1− px+ qx2
, (4)

where W0,W1 are initial Horadam numbers, [18].

1Special Horadam numbers:

Wn (0, 1; 1,−1) = Fn: Fibonacci• Wn (0, 1; p, q) = Un: Generalized Fibonacci•

Wn (2, 1; 1,−1) = Ln: Lucas• Wn (2, p; p, q) = Vn: Generalized Lucas•

Wn (0, 1; 2,−1) = Pn: Pell• Wn (2, 2; 2,−1) = Qn: Pell–Lucas•

Wn (1, 1; 2,−1) = MPn: Modified Pell• Wn (0, 1; 1,−2) = Jn: Jacobsthal•

Wn (2, 1; 1,−2) = jn: Jacobsthal–Lucas• Wn (0, 1; 3, 2) = Mn: Mersenne•

Wn (1, 3; 3,−2) = Tn: Fermat•
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2.2 DGC, HGC and CGC numbers

The set ofDGC numbers is introduced as: DCp :={w=z1+z2ε | z1, z2 ∈ Cp, ε
2 =0, ε 6=0, ε 6∈R}.

For w1 = z11 + z12ε, w2 = z21 + z22ε ∈ DCp, the equality and operations are given as
follows, [12]:

Equality w1 = w2 ⇔ z11 = z21 ∧ z12 = z22,

Addition w1 + w2 = (z11 + z21) + (z12 + z22) ε,

Scalar multiplication λw1 = (λz11) + (λz12) ε, λ ∈ R,
Multiplication w1w2 = (z11z21) + (z11z22 + z12z21) ε.

DCp is a vector space over R. A DGC number can be given in terms of its base elements
{1, J, ε, εJ} (or {1, ε, J, εJ}) as

w = x1 + x2J + y1ε+ y2Jε, (5)

where J indicates the pure generalized complex unit, ε is the pure dual unit and Jε is the
dual-generalized complex unit. The base elements {1, J, ε, εJ} satisfy the properties given in
Table 1.

1 J ε Jε

1 1 J ε Jε

J J p Jε pε

ε ε Jε 0 0

Jε Jε pε 0 0

Table 1. Multiplication scheme of DGC numbers, [12]

Moreover, the set ofHGC and CGC numbers are introduced as, respectively:

HCp: =
{
w = z1 + z2j| z1, z2 ∈ Cp, j

2 = 1, j 6= ±1, j 6∈ R
}
,

and
CCp: =

{
w = z1 + z2i| z1, z2 ∈ Cp, i

2 = −1, i 6∈ R
}
.

For the basis elements, we have Jj = jJ and Ji = iJ . The operations for the HGC and CGC
numbers can be given similarly (see in [12]).

We are now ready to prove our main results.

3 DGC Horadam numbers

Let us extend the familiar Horadam number to DGC version.

Definition 3.1. The DGC Horadam number W̃n (a, b; p, q) is defined by:

W̃n = Wn +Wn+1J +Wn+2ε+Wn+3Jε, (6)

where Wn is the n-th Horadam number and {1, J, ε, Jε} have properties given in Table 1.

These new types of Horadam numbers can be exactly examined in Table 2.
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W̃n W̃n (a, b; p, q) DGC Horadam numbers

F̃n W̃n (0, 1; 1,−1) DGC Fibonacci numbers [13]
Ũn W̃n (0, 1; p, q) DGC Generalized Fibonacci numbers
L̃n W̃n (2, 1; 1,−1) DGC Lucas numbers [13]
Ṽn W̃n (2, p; p, q) DGC Generalized Lucas numbers
P̃n W̃n (0, 1; 2,−1) DGC Pell numbers
P̃Ln W̃n (2, 2; 2,−1) DGC Pell–Lucas numbers
M̃Pn W̃n (1, 1; 2,−1) DGC Modified Pell numbers
J̃n W̃n (0, 1; 1,−2) DGC Jacobsthal numbers
J̃ Ln W̃n (2, 1; 1,−2) DGC Jacobsthal–Lucas numbers
M̃n W̃n (0, 1; 3, 2) DGC Mersenne numbers
T̃n W̃n (1, 3; 3,−2) DGC Fermat numbers

Table 2. Special cases for DGC Horadam numbers

Definition 3.2. Let W̃n, W̃m be DGC Horadam numbers. Then, by using the multiplication
properties from Table 1, equality, addition, subtraction, scalar multiplication, and multiplication
of DGC Horadam numbers are given, respectively, by:

W̃n = W̃m ⇔ Wn = Wm ∧ Wn+1 = Wm+1 ∧ Wn+2 = Wm+2 ∧ Wn+3 = Wm+3,

W̃n ± W̃m = (Wn ±Wm) + (Wn+1 ±Wm+1)J + (Wn+2 ±Wm+2)ε

+ (Wn+3 ±Wm+3)Jε, (7)

λW̃n = λWn + λWn+1J + λWn+2ε+ λWn+3Jε, λ ∈ R,

W̃n × W̃m = WnWm + pWn+1Wm+1 + (Wn+1Wm +WnWm+1) J

+ (WnWm+2 +Wn+2Wm + p(Wn+1Wm+3 +Wn+3Wm+1)) ε

+ (Wn+1Wm+2 +WnWm+3 +Wn+3Wm +Wn+2Wm+1) Jε. (8)

Remark 3.1. The DGC Horadam numbers satisfy the following recurrence relation

W̃n = pW̃n−1 − qW̃n−2, (n ≥ 2) , (9)

where
W̃0 = a+ bJ + (pb− qa) ε+

(
p2b− pqa− qb

)
Jε (10)

and
W̃1 = b+ (pb− qa) J +

(
p2b− pqa− qb

)
ε+

(
p3b− p2qa− 2pqb+ q2a

)
Jε, (11)

are the initial conditions.
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Proposition 3.1. The following linear recurrence relations are valid forDGC Horadam numbers:

• W̃n+2 = (p2 − q)W̃n − pqW̃n−1,

• pW̃n+2 = (p2 − q)W̃n+1 − q2W̃n−1,

• (p2 − 2q)W̃n+2 = q2W̃n + W̃n+4,

• (p4 − 3p2q + q2)W̃n+2 = (p2q2 − q3)W̃n + pWn+5,

• (p4 + 3q2 − 4p2q)W̃n+2 = (p2q2 − 2q3)W̃n + W̃n+6,

• (p4 − 5p4q + 6p2q2 − q3)W̃n+2 = (p4q2 − 3p2q3 + q4)W̃n + pW̃n+7,

• W̃k+n = (αn + βn)W̃k − qnW̃k−n.

Definition 3.3. Let W̃n be aDGC Horadam number. The different conjugations and modules can
be defined as in Table 3:

Generalized complex conjugate W̃†1n = (Wn −Wn+1J) + (Wn+2 −Wn+3J) ε

Generalized complex module N
†1
W̃n

= W̃n × W̃†1n
Dual conjugate W̃†2n = (Wn +Wn+1J)− (Wn+2 +Wn+3J) ε

Dual module N
†2
W̃n

= W̃n × W̃†2n
Coupled conjugate W̃†3n = (Wn −Wn+1J)− (Wn+2 −Wn+3J) ε

Coupled module N
†3
W̃n

= W̃n × W̃†3n
Anti-dual conjugate W̃†4n = (Wn+2 +Wn+3J)− (Wn +Wn+1J) ε

Table 3. Conjugations and modules of DGC Horadam numbers

Proposition 3.2. Let W̃n be DGC Horadam number. Then, the below properties can be given:

• W̃n + W̃†1n = 2 (Wn +Wn+2ε),

• W̃n × W̃†1n = W 2
n − pW 2

n+1 + 2 (WnWn+2 − pWn+1Wn+3) ε,

• W̃n + W̃†2n = 2 (Wn +Wn+1J),

• W̃n × W̃†2n = W 2
n + pW 2

n+1 + 2WnWn+1J ,

• W̃n + W̃†3n = 2 (Wn +Wn+3Jε),

• W̃n × W̃†3n = W 2
n − pW 2

n+1 + 2(WnWn+3 −Wn+1Wn+2)Jε,

• W̃n − εW̃†4n = Wn +Wn+1J ,

• εW̃n + W̃†4n = Wn+2 +Wn+3J .

224



3.1 Fundamental formulas for DGC Horadam numbers

We also seek to identify universal identities.

Theorem 3.1. Let W̃0, W̃1 be initial DGC Horadam numbers. Then, the generating function of
DGC Horadam numbers is as follows:

g̃(x) =
∞∑
n=0

W̃nx
n =
W̃0 +

(
W̃1 − pW̃0

)
x

1− px+ qx2
. (12)

Proof. The proof is straightforward by using equation (4).

Let us give the following theorems related to well-known identities for Horadam numbers
where α̃∗ = 1 + αJ + α2ε+ α3Jε, β̃∗ = 1 + βJ + β2ε+ β3Jε [13] and A =

b− aβ
α− β

,

B =
aα− b
α− β

, [18].

Theorem 3.2. Let W̃n be DGC Horadam number. Then, for n ≥ 2, the Binet’s formula can be
written as follows:

W̃n = Aα̃∗αn +Bβ̃∗βn. (13)

Proof. By using (3), the Binet’s formula for DGC Horadam numbers can be calculated as below:

W̃n = Aαn +Bβn +
(
Aαn+1 +Bβn+1

)
J +

(
Aαn+2 +Bβn+2

)
ε+

(
Aαn+3Bβn+3

)
Jε

= Aαn
(
1 + αJ + α2ε+ α3Jε

)
+Bβn

(
1 + βJ + β2ε+ β3Jε

)
= Aα̃∗αn +Bβ̃∗βn.

The preceding theorem allows us to give the following corollary and theorems.

Corollary 3.1. Let W̃−n be a negaDGC Horadam number (DGC Horadam number with negative
subscript). Then, the following equality holds:

W̃−n = Aα̃∗α−n +Bβ̃∗β−n. (14)

Theorem 3.3. The exponential generating function of DGC Horadam numbers is as follows:
∞∑
n=0

W̃n

xn

n!
= Aα̃∗eαx +Bβ̃∗eβx. (15)

Proof. Considering equation (13), the proof is straightforward.

Inspired to the study Theorem 3 in [22], we can give the following theorem:

Theorem 3.4. Let c, d and r be nonzero integers. For n ≥ 0,

W̃cn+r =
n∑
k=0

(
n

k

)
tn−kskW̃dk+r

if and only if s =
αc − βc

αd − βd
and t = qc

αd−c − βd−c

αd − βd
.

Proof. The proof is completed simply using equation (2) and equation (15).
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Theorem 3.5. Let W̃n, W̃m be DGC Horadam numbers. Then, the D’Ocagne’s identity for DGC
Horadam numbers is:

W̃m×W̃n+1 − W̃m+1×W̃n = −ABα̃∗β̃∗
√
p2 − 4q (αmβn − αnβm) . (16)

Proof. With the aid of the Binet’s formula forDGC Horadam numbers given in equation (13), we
can assert that

W̃m×W̃n+1 − W̃m+1×W̃n = −ABα̃∗β̃∗(α− β) (αmβn − αnβm) . (17)

By substituting equation (2) into (17), the proof is completed.

Theorem 3.6. Let W̃n beDGC Horadam number. Then, the Catalan’s identity forDGC Horadam
numbers is:

W̃2
n − W̃n+r×W̃n−r = −ABα̃∗β̃∗qn−r (αr − βr)2 . (18)

Proof. Similar to the previous proof, by using equation (13), we can write that

W̃2
n − W̃n+r×W̃n−r = ABα̃∗β̃∗(2αnβn − αn+rβn−r − αn−rβn+r)

= −ABα̃∗β̃∗(αβ)n−r(−2(αβ)r + α2r + β2r).
(19)

Substituting equality (2) into (19), we have equation (18).

Theorem 3.7. Let W̃n beDGC Horadam number. Then, the Cassini’s identity forDGC Horadam
numbers is:

W̃2
n − W̃n+1×W̃n−1 = −ABα̃∗β̃∗qn−1

(
p2 − 4q

)
.

Proof. By taking r = 1 in the Catalan’s identity given in equation (18) and considering equalities
given in equation (2), the Cassini’s identity for DGC Horadam numbers can be obtained.

3.2 Matrix representations of DGC Horadam numbers

A natural question to ask is if matrix representation of dual, generalized and real numbers, can be
generalized for DGC Horadam Numbers.

Theorem 3.8. Every W̃n = (Wn + Wn+1J) + (Wn+2 + Wn+3J)ε can be represented by the
following 2× 2 matrix:

AW̃n
=

[
Wn +Wn+1J 0

Wn+2 +Wn+3J Wn +Wn+1J

]
.

Proof. The main idea of the proof is to take an isomorphism A between dual numbers and 2×2

matrices. Here, A is a linear transformation between DGC Horadam numbers and the matrices{[
Wn +Wn+1J 0

Wn+2 +Wn+3J Wn +Wn+1J

]
| Wn is the n-th Horadam number

}
.

The columns of the matrix AW̃n
are represented by the coefficients of the elements

{W̃n, W̃nε}, considered in respect to the basis {1, ε}. Hence, DGC Horadam numbers is the
subset of 2× 2 matrices with generalized complex Horadam numbers.

226



Theorem 3.9. Every W̃n = Wn+Wn+1J+Wn+2 +Wn+3Jε can be also represented by a matrix
inM4(R):

BW̃n
=


Wn pWn+1 0 0

Wn+1 Wn 0 0

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn

 .

Proof. With the linear transformation Λ(Wn + Wn+1J) =

[
Wn pWn+1

Wn+1 Wn

]
, real Horadam

matrix representation is given by:

BW̃n
=

[
Λ(Wn +Wn+1J) Λ(0)

Λ(Wn+2 +Wn+3J) Λ(Wn +Wn+1J)

]
=


Wn pWn+1 0 0

Wn+1 Wn 0 0

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn

 .
The columns of the matrix BW̃n

are represented by the coefficients of the elements
{W̃n, W̃nJ, W̃nε, W̃nJε}, considered in respect to the basis {1, J, ε, Jε}. Moreover, DGC
Horadam number is the subset of 4× 4 matrices with real Horadam numbers.

Corollary 3.2. BW̃n
can be written also in the form:

BW̃n
= WnI4 +Wn+1J +Wn+2E +Wn+3J E ,

where BJ = J =


0 p 0 0

1 0 0 0

0 0 0 p

0 0 1 0

, Bε = E =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

, BJε = J E =


0 0 0 0

0 0 0 0

0 p 0 0

1 0 0 0

.

Theorem 3.10. For any W̃n, W̃m and λ ∈ R, the following properties hold:

AλW̃n
= λAW̃n

,•

BλW̃n
= λBW̃n

,•

AW̃nW̃m
= AW̃n

AW̃m
,•

BW̃nW̃m
= BW̃n

BW̃m
,•

det(AW̃n
) = (Wn +Wn+1J)2,•

det(BW̃n
) =

(
W 2
n − pW 2

n+1

)2.•

According to Theorem 3.9, the following corollary is immediate.

Corollary 3.3. The column matrix representation of an arbitrary DGC Horadam number W̃n

with respect to the standard basis is merely the collection of its coefficients:

W̃n =
[
Wn Wn+1 Wn+2 Wn+3

]T
.

The multiplication of W̃n and W̃m can also be given as
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W̃n×W̃m =


Wn pWn+1 0 0

Wn+1 Wn 0 0

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn




Wm

Wm+1

Wm+2

Wm+3

 .
So, we can say that the multiplication of DGC Horadam numbers can be calculated by matrix
product.

Theorem 3.11. Let W̃n = Wn +Wn+1J +Wn+2ε+Wn+3Jε. Then,

ρW̃n = W̃†1n ,•

σW̃n = W̃†2n ,•

τW̃n = W̃†3n ,•

where ρ = diag(1,−1, 1,−1), σ = diag(1, 1,−1,−1), τ = diag(1,−1,−1, 1) ∈M4(R).

4 HGC and CGC Horadam numbers

With a thought similar to Section 3, algebraic properties, linear recurrence relations, generating
function, well-known formulas and matrix forms for HGC and CGC Horadam numbers are
investigated in this section.

4.1 HGC Horadam numbers

Definition 4.1. TheHGC Horadam number Ŵn (a, b; p, q) is defined as:

Ŵn (a, b; p, q) = Wn +Wn+1J +Wn+2j +Wn+3Jj,

where Wn is the n-th Horadam number and the set {1, J, j, Jj} has multiplicative properties
given in [12].

Remark 4.1. TheHGC Horadam numbers satisfy the recurrence relation

Ŵn = pŴn−1 − qŴn−2, (n ≥ 2) ,

with initial conditions2 Ŵ0 and Ŵ1.

Linear recurrence relations, different conjugations and modules, and several properties can
also be obtained for the HGC Horadam numbers similiar to Proposition 3.1, Definition 3.3 and
Proposition 3.2, respectively.

Theorem 4.1. Let Ŵn, Ŵm be HGC Horadam numbers and α̂∗ = 1 + αJ + α2j + α3Jj,
β̂∗ = 1 + βJ + β2j + β3Jj. Then, the following identities hold:

Binet’s formula: Ŵn = Aα̂∗αn +Bβ̂∗βn.
D’Ocagne’s identity: Ŵm×Ŵn+1 − Ŵm+1×Ŵn = −ABα̂∗β̂∗

√
p2 − 4q (αmβn − αnβm) .

Catalan’s identity: Ŵ2
n − Ŵn+r×Ŵn−r = −ABα̂∗β̂∗qn−r (αr − βr)2 .

Cassini’s identity: Ŵ2
n − Ŵn+1×Ŵn−1 = −ABα̂∗β̂∗qn−1 (p2 − 4q) .

2Ŵ0 and Ŵ1 can easily be calculated similarly to the equations (10) and (11).
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Theorem 4.2. The matrix representations of Ŵn with respect to the bases {1, J, j, Jj} and {1, j}
are, respectively,

CŴn
=

[
Wn +Wn+1J Wn+2 +Wn+3J

Wn+2 +Wn+3J Wn +Wn+1J

]
,

DŴn
=


Wn pWn+1 Wn+2 pWn+3

Wn+1 Wn Wn+3 Wn+2

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn

 .
Corollary 4.1. DŴn

can be written also in the form:

DŴn
= WnI4 +Wn+1J +Wn+2j +Wn+3J j,

where DJ = J =


0 p 0 0

1 0 0 0

0 0 0 p

0 0 1 0

, Dj = j =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

, DJj = J j =


0 0 0 p

0 0 1 0

0 p 0 0

1 0 0 0

.

Corollary 4.2. The multiplication of Ŵn and Ŵm can also be calculated as:

Ŵn×Ŵm =


Wn pWn+1 Wn pWn+3

Wn+1 Wn Wn+3 Wn+2

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn




Wm

Wm+1

Wm+2

Wm+3

 .
Theorem 4.3. For Ŵn and ρ=diag(1,−1, 1,−1), σ=diag(1, 1,−1,−1), τ=diag(1,−1,−1, 1)∈
M4(R), the following equalities are satisfied:

ρŴn = Ŵ†1n ,•

σŴn = Ŵ†2n ,•

τŴn = Ŵ†3n .•

4.2 CGC Horadam numbers

This section describes CGC Horadam numbers and some key relations.

Definition 4.2. TheHGC Horadam number W̄n (a, b; p, q) is defined as:

W̄n = Wn +Wn+1J +Wn+2i+Wn+3Ji,

whereWn is the n-th Horadam number and the set {1, J, i, Ji} has multiplicative properties given
in [12].

Remark 4.2. The CGC Horadam numbers satisfy the recurrence relation

W̄n = pW̄n−1 − qW̄n−2, (n ≥ 2) ,

with initial conditions3 W̄0 and W̄1.

3W̄0 and W̄1 can easily be calculated similarly to the equations (10) and (11).
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Several features for the CGC Horadam numbers can be observed by taking into account the
way given in Proposition 3.1, Definition 3.3 and Proposition 3.2.

Theorem 4.4. Let W̄n, W̄m be CGC Horadam numbers and ᾱ∗ = 1 + αJ + α2i+ α3Ji,
β̄∗ = 1 + βJ + β2i+ β3Ji. Then, the following identities hold:

Binet’s formula: W̄n = Aᾱ∗αn +Bβ̄∗βn.
D’Ocagne’s identity: W̄m×W̄n+1 − W̄m+1×W̄n = −ABᾱ∗β̄∗

√
p2 − 4q (αmβn − αnβm) .

Catalan’s identity: W̄2
n − W̄n+r×W̄n−r = −ABᾱ∗β̄∗qn−r (αr − βr)2 .

Cassini’s identity: W̄2
n − W̄n+1×W̄n−1 = −ABᾱ∗β̄∗qn−1 (p2 − 4q) .

Theorem 4.5. The matrix representations of W̄n with respect to the bases {1, J, i, Ji} and {1, i}
are, respectively,

XW̄n
=

[
Wn +Wn+1J − (Wn+2 +Wn+3J)

Wn+2 +Wn+3J Wn +Wn+1J

]
,

YW̄n
=


Wn pWn+1 −Wn+2 −pWn+3

Wn+1 Wn −Wn+3 −Wn+2

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn

 .
Corollary 4.3. YW̄n

can be written also in the form:

YW̄n
= WnI4 +Wn+1J +Wn+2I +Wn+3J I,

where YJ = J =


0 p 0 0

1 0 0 0

0 0 0 p

0 0 1 0

, Yi = I =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

, YJi = J I =


0 0 0 −p
0 0 −1 0

0 p 0 0

1 0 0 0

.

Corollary 4.4. The multiplication of W̄n and W̄m can also be obtained as

W̄n×W̄m =


Wn pWn+1 −Wn+2 −pWn+3

Wn+1 Wn −Wn+3 −Wn+2

Wn+2 pWn+3 Wn pWn+1

Wn+3 Wn+2 Wn+1 Wn




Wm

Wm+1

Wm+2

Wm+3

 .
Theorem 4.6. For W̄n and ρ=diag(1,−1, 1,−1), σ=diag(1, 1,−1,−1), τ=diag(1,−1,−1, 1) ∈
M4(R), the following equalities hold:

ρW̄n = W̄†1n ,•

σW̄n = W̄†2n ,•

τW̄n = W̄†3n .•
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5 Computational results

The following examples demonstrate the above results.

Example 5.1. The fundamental identities hold for given values:

• D’Ocagne’s identity for DGC Jacobsthal numbers:

J̃3 × J̃6 − J̃4 × J̃5 = 8[(1− p2) + J + 5(1− p2)ε+ 5Jε],

where m = 3, n = 5 and W̃5 (0, 1; 1,−2) = J̃5.

• Catalan’s identity forHGC Pell numbers:

P̂2
2 − P̂3×P̂1 = −2[(1− p) + 2J + 3(1− p)j + 6Jj],

where n = 2, r = 1 and Ŵ2 (0, 1; 2,−1) = P̂2.

• Cassini’s identity for CGC Lucas numbers:

L̄2
3 − L̄4×L̄2 = −15[(1− p)i+ Ji],

where n = 3 and W̄3 (2, 1; 1,−1) = L̄3.

Example 5.2. The following observations can be given for

• W̃2 (2, 1; 1,−2) = J̃ L2, DGC Jacobsthal–Lucas numbers:

AW̃2
=

[
5 + 7J 0

17 + 31J 5 + 7J

]
, detAW̃2

= 25 + p49 + 70J,

BW̃2
=


5 p7 0 0

7 5 0 0

17 p31 5 p7

31 17 7 5

 , detBW̃2
= p22401− p2450 + 625,

and

W̃†22 = σW̃2 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




5

7

17

31

 =
[

5 7 −17 −31
]T
.

• Ŵ2 (2, 2; 2,−1) = P̂L2,HGC Pell–Lucas numbers:

CŴ2
=

[
6 + 14J 34 + 82J

34 + 82J 6 + 14J

]
, det CŴ2

= −1120− p6528− 5408J,

DŴ2
=


6 p14 34 p82

14 6 82 34

34 p82 6 p14

82 34 14 6

 , detBŴ2
= p242614784− p14623744 + 1254400,
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and

Ŵ†12 = ρŴ2 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




6

14

34

82

 =
[

6 −14 34 −82
]T
.

• J = ε, p = 0 and W̄2 (0, 1; 3, 2) = M̄2 Complex-dual Mersenne numbers:

XW̄2
=

[
3 + 7ε −(15 + 31ε)

15 + 31ε 3 + 7ε

]
, detXW̄2

= 234 + 972ε,

DW̄2
=


3 0 −15 0

7 3 −31 −15

15 0 3 0

31 15 7 3

 , detBW̄2
= 54756,

and

W̄†32 = τW̄2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




3

7

15

31

 =
[

3 −7 −15 31
]T
.

6 Conclusion

In this paper, our own curiosity has been arisen by a desire to analyse the fundamentals for
DGC, HGC, and CGC Horadam numbers. It should be noted that DGC Horadam numbers are
a generalization of the DGC Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, Jacobsthal–Lucas
and so on for p ∈ R. Similar arguments are applied to HGC and CGC Horadam numbers and
summarized briefly. The outstanding part of this paper is that, one can find well known identities
and different matrix representations for all special types of Horadam numbers.

We hope readers will find interesting results if they examine DGC, HGC and CGC Horadam
numbers for special values of p ∈ {−1, 0, 1}, (see Table 4).

Type Horadam number J p Condition

Dual-complex Wn +Wn+1i +Wn+2ε+Wn+3iε i −1

Hyper-dual Wn +Wn+1ε +Wn+2ε+Wn+3εε ε 0 ε 6= 0, εε 6= 0

Dual-hyperbolic Wn +Wn+1j +Wn+2ε+Wn+3jε j 1 j 6= ±1

Hyperbolic-complex Wn +Wn+1i +Wn+2j +Wn+3ij i −1

Hyperbolic-dual Wn +Wn+1ε +Wn+2j +Wn+3εj ε 0 ε 6= 0

Bihyperbolic Wn +Wn+1j +Wn+2j +Wn+3jj j 1 j 6= ±1, jj 6= 1

Bicomplex Wn +Wn+1i +Wn+2i+Wn+3ii i −1 ii 6= −1

Complex-dual Wn +Wn+1ε +Wn+2i+Wn+3εi ε 0 ε 6= 0

Complex-hyperbolic Wn +Wn+1j +Wn+2i+Wn+3ji j 1 j 6= ±1

Table 4. DGC,HGC and CGC Horadam numbers for p ∈ {−1, 0, 1} and J ∈ {i, ε, j}
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