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1 Introduction

In this section, we recall definitions and some properties of the generalized Tribonacci sequence
and generalized third order Pell sequence. The generalized Tribonacci sequence

{Wa(Wo, Wi, Wy, 5,t) }uso
(or shortly {W),,},,>0) is defined as follows:
Wy, =rWy1+sWy o +tW,_3, Wy=a W, =0Wy=c, n>3 (D

where a, b, ¢ are arbitrary complex (or real) numbers (not all being zero) and r, s, ¢ are real
numbers (not all being zero). For more information on this sequence, see for example [21].
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The sequence {W,, },,>0 can be extended to negative subscripts by defining
r

s 1
an = _ZW*(nfl) - gW*(n*2) + EWf(n*g)

forn =1,2,3,... when t # 0. Therefore, recurrence (1) holds for all integer n.

Now we consider the case r = 2, s = ¢ = 1 and in this case we write V,, = W,,. A generalized
third order Pell sequence {V}, },>0 = {V.(Vb, V1, V2) }n>0 is defined by the third-order recurrence
relations

V=2V, 1+ Vi a4+ V3 2)

with the initial values Vy = ¢y, Vi = ¢1, Vo = o where ¢, ¢; and ¢, are arbitrary real numbers
(not all being zero).
The sequence {V},},>0 can be extended to negative subscripts by defining

Vo= —V_n—1) = 2V_(n—2) + V_(n—3)

forn =1,2,3,.... Therefore, recurrence (2) holds for all integer n.

Next, we define two special case of the sequence {V}, }. Third-order Pell sequence {P,g?’)}nzo,
and third-order Pell-Lucas sequence {QS’)}TLZO are defined, respectively, by the third-order
recurrence relations

Py = 2P, + P+ PO, RY =0,PY =1,P =2, 3)
Qs = 200+ QL +QY, @ =307 =20 =6 4)
The sequences {PT(LS)}nZO and {Q,&S)}nzo can be extended to negative subscripts by defining
P8 = —p® _ —2P%  +P%
QY = —Q¥,_,—2Q% ,+Q" .
forn =1,2,3, ..., respectively. Therefore, recurrences (3)—(4) hold for all integer n.

Binet formula of generalized third order Pell numbers can be given as
ba” by 3" bs"

R P o Sl 7 gl oy oy

where
by =Vo—(B+7)Vi+6vVo, b =Vo— (a+7)Vi+ayVp, by = Vo — (a+ B)Vi +afVg. (5)

Here, o, 3 and « are the roots of the cubic equation z° — 222 — x — 1 = 0. Moreover,

1/3 1/3
2, (61, [\ (o 29
a = —_ —_— JR— —_ —_
371517 V36 54 V36
1/3 1/3
PR BN (YA Y 29
— 3% 51" V36 “As1 Vi3e)
1/3 1/3
2, a6, 2\, (o 29
_= —_— CL) —_— — C(.) —_— JR—
i 3 54 7\ 36 54 V36)

—1+iV3
-

where

w = exp(2mi/3).
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Note that
atf+y = 2
af+ay+py = —1,
apfy = 1.
In the rest of the paper, for easy writing, we drop the superscripts and write P, and (),, for Pé?’) and
QS’), respectively. Note that P, is the sequence A077939 in [19] associated with the expansion of
1/(1 —2x — 2% — 23), Q,, is the sequence A276225 in [19]. For more details for the generalized

third order Pell numbers, see Soykan [22].
The following Theorem presents sum formula of generalized third-order Pell numbers.

Theorem 1.1. Let x be a nonzero real or complex number. For n > 0, we have the following
formula: If 23 + 2* + 2x — 1 # 0, then

- k _@1(@

where
O(x) = 2"V, 13 — (20 — 1) 2"V, 1o — (2% + 220 — 12"V, — 2°V5
+ 2z — 1)V + (22 + 22 — 1)V,
O(x) = 2° + 2% + 2z — 1.
Proof. Taker = 2,s = 1,t = 1in [20, Theorem 2.1. (a)]. L]

The following theorem presents sum formulas of generalized third-order Pell numbers.

Theorem 1.2. For n > 0, we have the following formulas:
(a) Z?:O Vz = % (Vn+3 - Vn+2 - 2Vn+1 - Vot Vi+ 2V0) :
() Y iVi=3(Bn+2) Viis — (3n+5) Vigo — (60 +4) Viyr + Vo + 2V; — 2Vj).
(© Yl oV =3(=Vi2is—10V2 — V2 4 2Voi3Viis 4+ 6VigsVigo + V5 + 9V + 10V
— 61314 — 21314).
d >, iV = 2_17(_ (B3n+10) V43 — (2Tn +63) Vi, — (30n +40) V.2,
+ 2 (9n -+ 24) Vn+3Vn+2 +2 (3n + 7) Vn+3Vn+1 — 6Vn+2Vn+1 + 7‘/22
+ 36V2 4 10V2 — 30V4Vy — 8VaV, + 6V V1),

Proof. (a) Takex =1, =2,s =1, = 1in[20, Theorem 2.1. (a)]ortaker =2,s = 1,t =1
in [25, Theorem 2.1. (a)].

(b) Take x = 1,r = 2,5 = 1,t = 1in [27, Theorem 2.1. (a)] or take r = 2,s = 1, = 1 in
[29, Theorem 2.1. (a)].

(c) Takex = 1,r = 2,s = 1,t = 1 in [24, Theorem 3.1 (a)]. See also [23, Theorem 2.1].

(d) Take x = 1,7 = 2,s = 1,t = 11in [26, Theorem 2.1. (a)] or take r = 2,s = 1, = 1 in
[28, Theorem 2.1. (a)]. O
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Note that, using the recurrence relation V,, .3 = 2V, .o + V.11 + V,,, we can write the above
theorem as follows.

Theorem 1.3. For n > 0, we have the following formulas:

O

(a) Z?:o V; = % (Vn+2 - Vn+1 + V ‘/2 + ‘/1 + 2%) @

1

L
) Y iVi=3(Bn—1) Vo — Bn+2)Vop1 + Bn+2)V, + Vo +2V; — 2Vj) = 5

(© Yl Vi =a(—V2o =9V, = VZ2+6VaVisr + 2ViaV, + VE 4 9V + 10V
—61LV) — 2V, 1p)

Ay

=X

(d) Y7 V2= ( Bn+7V2,—9B8n+4)V2Z, — (Bn+10)V;2 + 6(3n + 5)ViyoVig
+2(3n + ) V2 Vy — 6V, 1V, + TV + 36V72 + 10V — 301, 1)
— 8VaVp + 6V4 V1)

O

q-
From the last Theorem, we have the following corollary which gives sum formulas of third-order

Pell numbers (take V,, = P, with Py =0, P, =1, P, = 2).

Corollary 1.3.1. For n > 0, third-order Pell numbers have the following properties:

(a) Z?:OB:%(PTL—I—Q_Pn—i-l“_Pn_l)

(b) Z?:o P = %((371 —1)Pyio— (3n+2)Ppi1 + (3n+2)P, +4).

(© YroP?=4(—Ply—9P2, — P24+ 6P, 2Py + 2P, 2P, + 1).

(@ Yo", iP? = ( (Bn+T7)P2, —90Bn+4)P2,, — (3n+ 10)P2 4+ 6(3n + 5) P, 2Py i1
+23n+4)P,12P, — 6P, 1P, + 4).

Taking V,, = Q,, with @y = 3,Q1 = 2, () = 6 in the last Theorem, we have the following
corollary which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 1.3.2. For n > 0, third-order Pell-Lucas numbers have the following properties:

(a) Z?:o Qz = % (Qn+2 - Qn+1 + Qn + 2) .
M) 37 iQ; = 5((Bn — 1)Qui2 — (3n 4 2)Qui1 + (3n +2)Q, + 4).
(©) Zz 0 Q; = %(_ n+2 9Qn+1 Q2 4 6Qn12Qni1 + 2Qn12Q, + 54).

@) 37,iQF = 5 (=(Bn+7)Qn,, — 9B +4)Q7 1, — (3n + 10)Q7 + 6(3n + 5)Qui2Qns
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2 Main results

Next, we recall some information on k-circulant matrix and Frobenius norm, spectral norm,
maximum column length norm and maximum row length norm. Let n > 2 be an integer and
k be any real or complex number. An n x n matrix Cy, = (¢;;) € M,,x,,(C) is called a k-circulant
matrix if it is of the form

Co C1 Cg ++° Cpn—2 Cp-1
ken—1 Co ct - Cp3 Cp-2
C, — kcn—o ken1 co -0 s Cpes
kco kes  key - Co c1
kCl kCQ kCg cee k’Cn,1 Co nxn
The k-circulant matrix CY, is denoted by Cy, = Circg(co, ¢1, - .., Cr1).
If £k = 1, then the 1-circulant matrix is called circulant matrix and denoted by
C' = Circ(eg, €1, - .., Cp1). Circulant matrix was first proposed by Davis in [4]. This matrix

has many interesting properties, and it is one of the most important research subject in the field
of the computational and pure mathematics (see for example references given in Table 1). For
instance, Deveci, Karaduman and Campbell [5] studied on the Fibonacci circulant sequences and
their applications. Then, later Kizilates and Tuglu [10] defined a new geometric circulant matrix

as follows:
Co (&1 Co tr Cp—2 Cp—1
kcn_y Co C1 o Cp—3  Cp-2
2
Cw = | kch—a kcp Co "t Cp—q4  Cp-3
knilcl kniQCQ kn7303 e ke Co

nxn

and then they obtained the bounds for the spectral norms of geometric circulant matrices with
the generalized Fibonacci and Lucas numbers. When the parameter satisfies £ = 1, we get the
classical circulant matrix. See also Polatli [14] for the spectral norms of k-circulant matrices with
a type of Catalan triangle numbers.

The Frobenius (or Euclidean) norm and spectral norm of an m x n matrix A = (a;;)mxn €
M5 (C) are defined respectively as follows:

m  n 1/2
- 2 _ ) *
4l = (ZZM ) and 1Al = a [n(4°))

i=1 j=1

1/2

where \;(A*A) ’s are the eigenvalues of the matrix A*A and A* is the conjugate of transpose of
the matrix A. The following inequality holds for any matrix A = (@;;)mxn € Muxn(C) (see [35,
Theorem 1 and Table 1]):

1
7 1Al < 1Al < 1Allp - (6)

It follows that
[All, < 1Al < Vo || All,.
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In literature there are other types of norms of matrices. The maximum column sum matrix

norm of an n X n matrix A = (a;;) is ||Al|; = max >, laij| and the maximum row sum matrix

norm is ||Al| = = max > _j—1 lai;| . The maximum column length norm ¢; (A) and the maximum

row length norm 71 (A) of an m x n matrix A = (a,;) are defined as follows:

1/2 1/2
o(4) = max (Z o ) and r1(4) = (Z o ) -
There is a relation between ||. ||, , ¢1(.) and 7 (.) norms:

Lemma 2.1. [8] For any matrices A = (ai;)mxn € Mmxn(C) and B = (b;j)mxn € Mpmxn(C),

we have

[A e Bll, <ri(A)ei(B)
and

Ao Bll, < |All, 1 Bll,
and

1A ® Bll, = [|All, | Bl
where A o B is the Hadamard product which is defined by

Ao B = (aijbij),
A ® B is the Kronecker product which is defined by

Calculations of the above norms ||A|| -, || 4], , ¢1(A) and 7 (A) require the sum of the squares
of the numbers a;;. As in our case, the numbers a,; can be chosen as elements of generalized
third-order Pell sequence. For more details on norm of matrices, see for example [7].

In the following Table 1, we present a few special study on the Frobenius norm, spectral
norm, maximum column length norm and maximum row length norm of circulant (k-circulant,
geometric circulant, semicirculant) matrices with the generalized m-step Fibonacci sequences
which require sum formulas of second powers of numbers in m-step Fibonacci sequences
(m =2,3,4).

Order Name of sequence Papers
Fibonacci, Lucas [5, 6, 10, 30]
Second order Pell, Pell-Lucas [1, 31]

Jacobsthal, Jacobsthal-Lucas | [15, 32, 33, 34]

Tribonacci, Tribonacci—Lucas [9, 16, 17]
Padovan, Perrin [3, 12, 18]

Fourth order | Tetranacci, Tetranacci—Lucas [11]

Third order

Table 1. Papers on the norms

We need the following two lemmas for our calculations.
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Lemma 2.2. [2, Lemma 4] Let C), = Circg(cy, c1, - . ., ¢n_1) be an x n k-circulant matrix. Then

we have ) ,
— . - NP
\i(Ck) = Z knw e, = Z (k:%w_j> p
p=0 p=0
where w = exp(2mi/n) = e%,j =0,1,2,...,n — 1. Moreover, in this case
1 n—1 —p
l s
¢, = EZ; (knw J) NG, p=0,1,2,...,n—1.
j:
Lemma 2.3. [7] Let A be a n X n matrix with eigenvalues \1, Ma, A3, ..., \,. Then, A is a normal
matrix if and only if the eigenvalues of AA* are |M|*,|Xo|, | \s|”, ..., [Au|” where A* is the

conjugate of transpose of the matrix A.

Next, we define k-circulant matrix with generalized third-order Pell numbers entries.
Throughout this paper, the k-circulant matrix, whose entries are the generalized third-order Pell
numbers, will be denoted by C,, (V') = Circg(Vo, Vi,..., V1) :

Definition 1. A n x n k-circulant matrix with generalized third-order Pell numbers entries is

defined by
% VYI VY2 e Vn—Q Vn—l
kvn—l % Vi e Vn—3 Vn—2
Cn(v)k = CiI‘Ck(Vb, ‘/17 R anl) = kvan k’Vn,1 % te Vn74 Vn,3 . (7)
i kVa kVs o KV Voo )

We call this matrix generalized third-order Pell k-circulant matrix. We consider two special
cases of generalized third-order Pell £-circulant matrix, namely third-order Pell k-circulant matrix:
C,(P), = Circg(Py, P, ..., P,_1) and third-order Pell-Lucas k-circulant matrix: C,(Q)r =
Circg(Qo, Q1, - - -, Qn—1). We denote the sum of entries of C,, (V') as S(C,,(V)g).

Lemma 2.4. The sum of entries of C,,(V)y is

1
S(CL(V)) = §((—k +3kn 4+ 1)V,0 — (2k + 3kn — 2)V,i1 — 2(—k + 3kn + 1)V,

+(k—3n—1)Va+ (2k +3n — 2)V; — 2(k — 3n — 1)V}).
Proof. From the definition of C,,(V'), using Theorem 1.3, we obtain
SC(V)k) = nVo+((n =1 +k)Vi+((n—=2)+2k)Va+-+ 1+ (n -1V,

n—1 n—1
= > (n—))Vit k) iV
=0 =1

n—1

n—1
= nY Vit (k-1 iV
=0

=1
= n (—Vn + iv) +(k—1) (—nVn + izV)
=0 1=0

1
= =k +3kn + 1)Viyz — (2k + 3kn = 2)Voy — 2(—k + 3kn + 1)V,

+(k—3n—1)Vao+ (2k+3n —2)V; — 2(k — 3n — DVj). O
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Taking V,, = P, with Py = 0,P, = 1,P, =2and V,, = @, with Qg = 3,Q1 = 2,Q5 = 6,
respectively, in the last Lemma, we obtain the following corollary.

Corollary 2.4.1. We have the following results:

(a) The sum of entries of C,,(P)y is

1
S(CL(P)y) = §((—k +3kn+1)P,yo — (2k 4+ 3kn — 2) Py — 2(—k + 3kn+ 1)P,

+ (4k — 3n —4)).
(b) The sum of entries of C,,(Q)y, is

S(Cn(@Q)r) = %((—k +3kn 4+ 1)Qnya — (2k + 3kn — 2)Qni1 — 2(—k + 3kn + 1)Q,,
+ (4k + 6n — 4)).

Next, we present the maximum column sum matrix norm ||C,,(V)x||, and the maximum row
sum matrix norm ||C,, (V)| of the matrix C, (V) = (c;;) under certain condition on the
generalized third-order Pell sequence V, and &.

Theorem 2.5. Suppose that V,, > 0 for all the nonnegative integers p. Then we have the following
formulas: If k > 1 then

1
NG (V)klly = I1Ca(VIillo = 5 (kVasz = kViy — 26V, — kVa + kV1 + (3 — K)o),

and if k < 1, then

1
1C(VIilly = 1Ca(V)illoo = 5(Vasz = Vipr = 2Va = Va £ Vi + 2V0).

Proof. Suppose that k& > 1. Then from the definition of the matrix C,,(V), = (¢;;), using
Theorem 1.3, we can write

1<j<n 4

[Ch(V)ill, = max Z; |cij| = lrg]a;{!clj\ + [eo) + lesi| + -+ |enjl}

= |Cl1| + |621| + |631| + -+ |Cn1|
= Vot kVaor +kVao+ -+ Vs + kVa + kV)

= Vo—kVo—kV,)+ k) Vi
=0

1
= S (Vi = Vi = 2kV, = Ve £+ RV + (3 = K)Vp).

Similarly, we have

1
3
Suppose now that £ < 1. Then from the definition of the matrix C,(V), = (¢;;), using

1C,(Vkll = 5 (Vg2 — Vg1 — 2kV,, — Vo + kVi + (3 — k) V).

Theorem 1.3, we can write
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n

1C.(Vkll, = fgja;;;kmIlfgjég{lclj\+\C2j|+|03a‘!+"'+|0nj|}
—

= ‘Cln‘+‘C2n‘+‘c3n|+”'+‘cnn|
= Voo + Voot -+ Vs + Vo + Vi + 1

=0

1
= g(vn—&—Z - Vn-i—l - QVn - ‘/2 + ‘/1 + 2%)

Similarly, we have

1

oo:g(vn+2_vn+1_2vn_‘/é+‘/i+2%) ]

Taking V,, = P, with Py = 0, P, = 1, P, = 2and V,, = @, with Qo = 3,Q1 = 2,Q> = 6,
respectively in the last theorem, we obtain the following corollary.

G (V)]

Corollary 2.5.1. We have the following results:

@) Ifk > 1, then
k

1Ca(P)elly = ICa(Plilloe = 5 (Pasa = P — 2P0 — 1),

and if k < 1, then
1
1Ca (Pl = 1Cu(P)elloe = 5 (Pur2 = Pagr = 25 — 1)

(b) Ifk > 1, then

[Cn (@)l = 1Ca (@)l = %(k:Qm — kQui1 — 2kQn + (9 — TE)),
and if k < 1, then

ICa (@l = ICu(@QUel = 5(Qusz — Quis = 200 +2).

Now, we determine the Euclidean (Frobenius) norm of k-circulant matrix C,, (V).

Theorem 2.6. The Euclidean (Frobenius) norm of k-circulant matrix C,,(V')y, is:

IC(V)illp = V1 (22(V)) + pa(V)

where

o1 (V) = %(—V,E+2 — V2 — 10V2 + 6V, yoViy1 + 2VgaVi + Vi + 9V + 10V
— 615V — 21 1g),

(V) = %(W —D)(=Bn+7)V2,—9Bn+4)V2, —10(3n+ 1)V, + 6(3n + 5) Va2 Viss
+2(3n + 4)Vyo Vi — 6V Vi 4 TV 4 36V + 10VE — 30V,V; — 8V Vg + 6V V7).
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Proof. From the definition of the Euclidean norm of a matrix, using Theorem 1.3, we obtain

CaVillp)* = > eyl
i=1,j=1
n n—1

-1
= D (n—D)V2+ k) vy
i=0

7 =1

n—1
= nY VZH(EP-1)) iV
=0 =1

= n(p1(V)) + p2(V)

—_

where (V') and p4(V') are as in the statement of the theorem. Now, it follows that

1C.(V)illp = v/ (91(V)) + (V). O

Note that

n—1

n—1
STV and (V) = (K1) SV
=0

— i=1
Taking V,, = P, with Py, = 0, P, = 1,P, = 2and V,, = @, with Qg = 3,01 = 2,Q> = 6,
respectively in the last Theorem, we obtain the following corollary.

Corollary 2.6.1. We have the following results:

(a) The Euclidean (Frobenius) norm of k-circulant matrix C,,(P)y, is:

|Ca(P)illp = /1 (91(P)) + 2 P)
where
©01(P) = %(—Pf o — 9P — 10P2 + 6P, 0Pyt + 2P 0Py + 1),
o2(P) = 5 (K2 = 1)(=(Bn + T)PLy — 930+ HPZ,, — 10030+ 1)

+6(3n + 5)PoyoPoiy + 2(3n 4 4) Py Py — 6P, 1 Py + 4).

(b) The Euclidean (Frobenius) norm of k-circulant matrix C,,(Q)y, is:

ICw( @)kl = V1 (21(Q)) + ¢2(Q)

where

1
¥1 (Q) = §( n+2 9Qn+1 10@721 + 6Qn+2Qn+1 + 2Qn+2Qn + 54)7

22(Q) = = (K = 1)(=(3n + V@25 — 930+ @2, — 106 +1)Q3
+ 6(37”& + 5)Qn+2Qn+1 + 2(377' + 4)Qn+2Qn - 6Qn+1Qn + 18)'

The following theorem gives us the eigenvalues of the matrix in (7).
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Theorem 2.7. The eigenvalues of C,,(V)y, are

OV
V(N (') Pp— L0 E—
(krw)3 + (kww=)2 + 2(knw—7) — 1
where
O;(V) = kV,, — Vo — ki (—kViiy + 2KV, + Vi — 2Vp)w ™
t ke (Vo — 2kVisy — kViy — Vi + 2V + Vo )w ™%
and

271

w = exp(2mi/n)=enr,
j = 0,1,2,3,...,n—1.

Proof. By using Lemma 2.2, we obtain

MGV = S kRw P,

p=0
Now using Theorem 1.1 (by putting x = k=w=7) and recurrence relation
Vits = 2Voga + Vi1 + Vi,

we obtain required result. [

Taking V,, = P, with Py =0, P, =1,P, =2and V,, = @, with Qg = 3,Q1 = 2,Q5 = 6,
respectively, in the last Theorem, we obtain the following corollary.
Corollary 2.7.1. We have the following results:

(a) The eigenvalues of C,,(P)y are

®;(P)

(GalP)) = (knw=3)3 + (knw=)? + 2(kww=7) — 1’

(b) the eigenvalues of C,,(Q)y are

MC@Q) = @)
(krw=7)3 + (knw7)2 4 2(knw=7) — 1
where
®;(P) = kP, — kn(—kPpiy 4 2kP, + 1)w ™ + k# (kPpsy — 2kPpyy — kPy)w ™%,
D;(Q) = kQu—3—kn(~ an+1+2an—4>w—j + k7 (kQuyz — 2kQui1 —kQu+1)w ™,
w = exp(2mi/n) = , j=0,1,2,3,...,n—1.

The following theorem presents the upper and lower bounds of the spectral norm of C,, (V).
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Theorem 2.8. Let C,, (V) = Circg(Vo, Vi, ..., Vao1) be a k-circulant matrix. Then if |k| > 1

then

21 V) < NG (V)elly, < JVE + R (<2 + (V)1 = V2 + (V).

and if |k| < 1 then
[ Veer(V) < IC(V)klly < v (V)
where ©1(V') is as in Theorem 2.6.

Proof. Note that we can write ¢1 (V') as in the following forms.

e (V) = V7

Nol e

—6V5V1 — 21h1g),

n—1

pr(V) = VP4 V==V +a(V)=) V7

=1

(=V2, — V2, — 10V + 6V Vs + 2ViiaVi + V2 + 9V + 1012

From Theorem 2.6, we know that the Euclidean (Frobenius) norm of k-circulant matrix C,, (V) is

n—1 n—1
UICaVIllp) = D= )VE+ K[y V2

1=0 i=1

n—1 n—1

= n) VP (kP-1)) iV
=0 i=1
If |k| > 1, then we get, using Theorem 1.3,
n—1 n—1 n—1

(IC(V)ellp)* 2 D (n—1) V2+Z@V2—HZV2—H(¢1(V))

=0
ie., |Ch(V)kllz = /1 (p1(V)). It follows that
1Ca Vel
VA

[C.(V)kll, = Ver (V).

Similarly, If |k| < 1, then we obtain

1 (V).

Then by (6), we obtain

n—1 n—1
IC. Vel = S =iV + kP> V2
=0 =1
n—l n—1 n—1
> Y= )RV R YDV =k YV
=0 i=1 i=0

= nlk* (p1(V)).
i, [|[Co(V)iklly > A/ |k (21(V)). Tt follows that

IOl 4y .
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Then by considering (6), we get

1Cn(V)klly = [K[ v/ (£1(V)).

Now, for |k| > 1, we give the upper bound for the spectral norm of the matrix C,,(V');, as follows.
Let the matrices B and C' be as

v 1 1 - 1 1
o, Vo 1 - 1 1
B=| kVio kVot VW - 1 1
WA e KVs e WV Vo )
and
1 ‘/1 ‘/2 Vn—Q Vn—l
1 1 ‘/1 anS Vn72
Vn74 an?)

nxn

such that C,,(V'), = B o C. Then we obtain

n 1/2 n—1
r1(B) = max (Z |bw~|2> = [V IRV = Vg P (Vg + (V).
AN =

Jj=1

n 1/2
2
(C) = max, (Z el ) =
- =1

By Lemma 2.1, we have

1C(V)elly < m(B)er(€) = V2 + kP (V2 + o1 (V)1 = Vi + 1 (V).

For |k| < 1, we give the upper bound for the spectral norm of the matrix C,, (V') as follows. We
define the matrices D and E as

ol
—_ =
—_ =
—_ =
—_ =

B
oy
=
oy
—_

nxn
and

Vo Vi Vo Viea Vi

Vier Vo A Vies Vi

E=] Va2 Via W Viea Vies

Vi Vo Vs Vit Vo

nxn

such that C,,(V), = D o E.
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Then we obtain
1/2
ri(D) = = max <Z‘dw| ) =/n,
and
1/2
o) = jmax (Z el ) -

By Lemma 2.1, we have

ICh(V)illy < mi(D)er(E) = vn (pa(V)).
This completes the proof. []

We consider two special cases of the above theorem: the upper and lower bounds of the
spectral norm of third-order Pell k-circulant matrix: C,,(P), = Circg(Fp, Py,...,P,—1) and
the upper and lower bounds of the spectral norm of third-order Pell-Lucas k-circulant matrix:

Cn(Q) = Circg(Qo, Q1 - - -, Qn—1)-

Firstly, the following corollary gives the upper and lower bounds of the spectral norm of
Cn(P)g.

Corollary 2.8.1. Let C,,(P), = Circy(Fo, Py, ..., P,_1) be third-order Pell k-circulant matrix.
Then if |k| > 1, then

o1(P) < [CulPYily < /B2 + K (~B2 + oi(P)y/1 — B2 + u(P).

and if |k| < 1, then

K[V @1 (P) < [|Ca(Pilly < v (p1(P)),

where @1(P) is as in Corollary 2.6.1.
Proof. TakeV,, = P,,, Py =0, P, = 1, P, = 2 in Theorem 2.8. [l

Secondly, the following corollary gives the upper and lower bounds of the spectral norm of

Cn(Q)-

Corollary 2.8.2. Let C,,(Q)r = Circk(Qo, Q1, - - ., Qn_1) be a third-order Pell-Lucas k-circulant
matrix. Then if |k| > 1, then

1@ < G (Qlly < Q3+ kP (-Q2 + 01 (@)1 - Q3 +¢1(Q).

and if |k| < 1, then

V(@) < |Cu(Q)klly < Vi (01(Q)),

where p1(Q) is as in Corollary 2.6.1.
Proof. Take V,, = Q,,, Qo = 3,Q1 = 2, ()2 = 6 in Theorem 2.8. O]

Next, we present the determinant of C,, (V).
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Theorem 2.9. The determinant of C,,(V' )y, is given by
Ag—\/A§—4A1A3)n B <A2+\/A§—4A1A3)n N (&>n)
Ay

A} <1 — ( A, 27,
det(C, (V) = (=) (kQ, + (k — Q_p)k2 — 1) 7

where
A o= kV, =V,
Ay = kn(=kViy +2kV, +V; — 2V),
Ay = ki (kVipis — 2kV,r — KV, — Vo + 2V; + V).

Proof. By considering identities
n—1
[[@-yw™) = a" =y~
=0
ﬁ(x . yw_j + zw_Qj) - (1 . (Z/ Y y2 — 4332) _ <y+ v y2 — 4$Z> n (z)n) ’
o 2z 2z x

((k%w—j)?’ + (krw )2+ 2(knw ) — 1) = (aknw™ — 1)(fkrw™ — 1) (yknw ™ — 1),

we see that
n—1
[T ((Rrw™)® + (krw™)? + 2(kiw™) = 1) = (<1)" (kQu + (k = Q) — 1),
j=0
and
n—1 n n n
o Ay — /A2 = A1 A, Ao + /A2 = 4N A, As
Hq>j_A1 1- e — oA tx) )
7=0
where
w = exp(2mi/n),
O, = kV, —Vo—kn(—kVypr +2kV, + Vi — 2V w ™
tkn (KVpyo — 2KVt — KV, — Vo +2Vi + Vo)w ™%,
and

Ay = EV, =W,
No = ki (=kVjr + 2KV, + V4 — 21),
Ay = ki (kVipis — 2kV,r — KV, — Vo +2V; + V).

From Theorem 2.7, we have

det(C,(V)) = A (Cn(V i)

(krnw=9)3 + (knw=7)2 + 2(knw=7) — 1
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— ‘7:0
- onl 1 1 . 1 .
[T (k) + (kiw)? + 2(kiw) 1)
5=0
An AQ—\/A%—4A1A3 " A2+\/A%—4A1A3 " Ai n
rl- 2A1 o 2A1 + (Al)
B (=1) 1 (kQn + (k — Q_n)k?> — 1) ’
which completes the proof. [

We consider two special cases of the above theorem: the determinant of third-order Pell
k-circulant matrix: C,,(P) = Circy(Py, Py, ..., P,_1) and the determinant of third-order Pell-
Lucas k-circulant matrix: C,,(Q)y = Circg(Qo, @1, - - -, Qn_1)-

Firstly, the following corollary gives the determinant of C,,(P)j.

Corollary 2.9.1. The determinant of C,,(P)y, is given by

det (C(P)y) = . (1 _ (w)" - <M)n * <%>n)

2A1 2A1
(=)™ (kQn + (k — Q_n)k* — 1)

where
Ay = kP,
As ke (—kPpyy + 2kP, + 1),
As kn (kPyiy — 2kPpsy — kB,).
Proof. TakeV,, = P,, Py =0, P, =1, P, = 2 in Theorem 2.9. [l

Secondly, the following corollary gives the determinant of C,,(Q)y.

Corollary 2.9.2. The determinant of C,,(Q)y, is given by

An (1 (AQ—\/A§—4A1A3)R (A2+,/A§—4A1A3>n (AJ)”>
w1 - (Roviethde ) (ReryResihde )

2A1 2/\1 Al
d t Cn == )
HUCnl@)r) (—1)"™ 1 (kQn + (k— Q_)k2 — 1)
where
AN = kQ, — 3,
A2 - k%<_an+1 + 2]€Qn - 4)7
As = ki (kQuio — 2kQpir — kQp + 1).
Proof. Take V,, = Q,,, Qo = 3,1 = 2,5 = 6 in Theorem 2.9. O]
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3 Numerical examples

In this section, we give upper and lower bounds for the spectral norms of k-circulant matrix

Cyn(P)y = Circy(Py, Py, ..., P,_1) using Theorem 2.8.

k Lower bound

|Cn(P)kll, Upper bound

1

14.10673598

21.0000000

199.49937343

O 0o 00 0O o Co|lUt Lt Ut Ut Ot Ut I
ot

232.68003782
232.68003782
232.68003782
232.68003782
232.68003782

375.06017982

571.06349258

668.84271369
1326.3440329
1655.9173514

1.08  14.10673598 22.191242817 152.35274858
1.7 14.10673598 32.721630822 339.14893503
2 14.10673598 38.109512785 398.99874687
4 14.10673598 74.758299427 797.99749373

14.10673598 93.197313613 997.49686716
1 232.68003782 352.000000 54140.499998

58471.739998
92038.850048

108280.99999
216561.99999
270702.49999

Table 2. Some upper and lower bounds for the spectral norms of C,,(P)y

forn = 5,8 and |k| > 1

n k Lower bound |Cr(P)kll, Upper bound
5 0.00 0.0 15.313439017 31.543620591
5 0.21 2.9624145557 15.475712850 31.543620591
5 0.34 4.7962902331 15.716833208 31.543620591
5 0.53 7.4765700692 16.384997574 31.543620591
5 0.70 9.8747151858 17.497792306 31.543620591
5 0.99 13.965668620 20.856681349 31.543620591
8 0.00 0.0 252.99406315 658.11853036
8§ 0.21  48.862807942 254.92973147 658.11853036
8§ 0.34 79.111212859 258.3008072 658.11853036
8 0.53 123.32042004 268.08740786 658.11853036
8§ 0.70 162.87602647 268.08740786 658.11853036
8 0.99 230.35323744 349.21360741 658.11853036

Table 3. Some upper and lower bounds for the spectral norms of C,,(P)y
forn = 5,8 and |k| < 1.
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